6 results match your criteria: "South Africa and National Institute for Theoretical Physics (NITheP)[Affiliation]"
Phys Rev E
December 2017
Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa and National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, Durban 4001, South Africa.
We investigate generalized non-Markovian stochastic Schrödinger equations (SSEs), driven by a multidimensional counting process and multidimensional Brownian motion introduced by A. Barchielli and C. Pellegrini [J.
View Article and Find Full Text PDFJ Chem Phys
October 2017
Departamento de Física and Instituto de Computación Científica Avanzada (ICCAEx), Universidad de Extremadura, Badajoz E-06006, Spain.
Values of the fifth virial coefficient, compressibility factors, and fluid-fluid coexistence curves of binary asymmetric nonadditive mixtures of hard disks are reported. The former correspond to a wide range of size ratios and positive nonadditivities and have been obtained through a standard Monte Carlo method for the computation of the corresponding cluster integrals. The compressibility factors as functions of density, derived from canonical Monte Carlo simulations, have been obtained for two values of the size ratio (q = 0.
View Article and Find Full Text PDFJ Chem Phys
July 2014
School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa and National Institute for Theoretical Physics (NITheP), KZN node, Pietermaritzburg, South Africa.
In this article, we perform Gibbs ensemble Monte Carlo (GEMC) simulations of liquid-liquid phase coexistence in nonadditive hard-sphere mixtures (NAHSMs) for different size ratios and non-additivity parameters. The simulation data are used to provide a benchmark to a number of theoretical and mixed theoretical/computer simulation approaches which have been adopted in the past to study phase equilibria in NAHSMs, including the method of the zero of the Residual Multi-Particle Entropy, Integral Equation Theories (IETs), and classical Density Functional Theory (DFT). We show that while the entropic criterium is quite accurate in predicting the location of phase equilibrium curves, IETs and DFT provide at best a semi-quantitative reproduction of GEMC demixing curves.
View Article and Find Full Text PDFSci Rep
May 2014
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA.
The exact treatment of Markovian open quantum systems, when based on numerical diagonalization of the Liouville super-operator or averaging over quantum trajectories, is severely limited by Hilbert space size. Perturbation theory, standard in the investigation of closed quantum systems, has remained much less developed for open quantum systems where a direct application to the Lindblad master equation is desirable. We present such a perturbative treatment which will be useful for an analytical understanding of open quantum systems and for numerical calculation of system observables which would otherwise be impractical.
View Article and Find Full Text PDFPhys Rev Lett
December 2013
Institute of Theoretical Physics, University of Stellenbosch, Stellenbosch 7600, South Africa and National Institute for Theoretical Physics (NITheP), Stellenbosch 7600, South Africa.
We study the nonequilibrium dynamics of correlations in quantum lattice models in the presence of long-range interactions decaying asymptotically as a power law. For exponents larger than the lattice dimensionality, a Lieb-Robinson-type bound effectively restricts the spreading of correlations to a causal region, but allows supersonic propagation. We show that this decay is not only sufficient but also necessary.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2013
School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01, Scottsville 3209, Pietermaritzburg, South Africa and National Institute for Theoretical Physics (NITheP), KZN node, Pietermaritzburg, South Africa.
The bulk phase behavior of a fluid is typically altered when the fluid is brought into confinement by the walls of a random porous medium. Inside the porous medium, phase-transition points are shifted, or may disappear altogether. A crucial determinant is how the walls interact with the fluid particles.
View Article and Find Full Text PDF