290,485 results match your criteria: "Soil & Environmental Sciences University of Arkansas Fayetteville Arkansas.[Affiliation]"

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings.

Int J Mol Sci

January 2025

Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.

Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.

View Article and Find Full Text PDF

Alfalfa ( L.) is an outstanding species used for the remediation of heavy metal-contaminated soil, and our previous research has shown that PGPR can promote plant growth under high-concentration lead stress. This discovery has forced scientists to search for PGPR strains compatible with alfalfa to develop an innovative bioremediation strategy for the remediation of lead-contaminated soil.

View Article and Find Full Text PDF

Halotolerant plant growth-promoting bacteria (HT-PGPB) have attracted considerable attention for their significant potential in mitigating salt stress in crops. However, the current exploration and development of HT-PGPB remain insufficient to meet the increasing demands of agriculture. In this study, an HT-PGPB isolated from coastal saline-alkali soil in the Yellow River Delta was identified as J2-5-19.

View Article and Find Full Text PDF

Increased application of organic fertilizer is an effective measure to improve greenhouse soil quality. However, prolonged and intensive application of organic manure has caused nutrient and certain heavy metal accumulation in greenhouse soil. Therefore, the optimal quantity of organic manure required to sustain soil fertility while mitigating the accumulation of heavy metals and other nutrients resulting from continuous application remains unclear.

View Article and Find Full Text PDF

Phenotypic Profiling of Selected Cellulolytic Strains to Develop a Crop Residue-Decomposing Bacterial Consortium.

Microorganisms

January 2025

Microbiology Laboratory, Lithuanian Research Centre for Agriculture and Forestry, Institute of Agriculture, Instituto al. 1, Akademija, LT-58344 Kedainiai, Lithuania.

Slow decomposition rates of cereal crop residues can lead to agronomic challenges, such as nutrient immobilization, delayed soil warming, and increased pest pressures. In this regard, microbial inoculation with efficient strains offers a viable and eco-friendly solution to accelerating the decomposition process of crop residues. However, this solution often focuses mostly on selecting microorganisms based on the appropriate enzymic capabilities and neglects the metabolic versatility required to utilize both structural and non-structural components of residues.

View Article and Find Full Text PDF

Over the past four decades, biofertilizers, which are microbial formulations based on species, have significantly contributed to sustainable agriculture by enhancing crop growth, improving soil health, and reducing the dependency on chemical fertilizers. species, particularly known for their ability to promote plant growth, fix nitrogen, solubilize phosphorus, and produce growth-promoting substances such as phytohormones and antibiotics, have emerged as key players in the development of eco-friendly agricultural solutions. This research utilizes bibliometric analysis based on 3,242 documents sourced from the Web of Science database to map the development, key contributions, and innovation within the field from 1985 to 2023.

View Article and Find Full Text PDF

Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.

Microorganisms

January 2025

Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.

This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.

View Article and Find Full Text PDF

Fertilization Induced Soil Microbial Shifts Show Minor Effects on Yield.

Microorganisms

January 2025

Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.

Fertilization can improve soil nutrition and increase the yield of , but the response of soil microbial communities to fertilization treatments and their correlation with soil nutrition and yield are unclear. In order to investigate the characteristics of soil physicochemical qualities and the bacterial community, we carried out a field experiment comparing various quantities of nitrogen (N), phosphorus (P), and potassium (K) fertilizers to the unfertilized control treatments and the yield of in raw material forests in response to different applications of fertilizers and to try to clarify the interrelation among the three. Results showed that (1) there are significant differences in the effects of different fertilization treatments on the soil properties of raw material forests.

View Article and Find Full Text PDF

Although bioremediation is considered the most environmentally friendly and sustainable technique for remediating contaminated soil and water, it is most effective when combined with physicochemical methods, which allow for the preliminary removal of large quantities of pollutants. This allows microorganisms to efficiently eliminate the remaining contaminants. In addition to requiring the necessary genes and degradation pathways for specific substrates, as well as tolerance to adverse environmental conditions, microorganisms may perform below expectations.

View Article and Find Full Text PDF

The soil microbiome plays an important role in wetland ecosystem services and functions. However, the impact of soil hydrological conditions on wetland microorganisms is not well understood. This study investigated the effects of wetted state (WS); wetting-drying state (WDS); and dried state (DS) on the diversity of soil bacteria, fungi, and archaea.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) can preferentially absorb the released ammonium (NH) over nitrate (NO) during litter decomposition. However, the impact of AMF's absorption of NH on litter nitrogen (N) decomposition is still unclear. In this study, we investigated the effects of AMF uptake for NH on litter N metabolic characteristics by enriching NH via AMF suppression and nitrification inhibition in a subtropical forest.

View Article and Find Full Text PDF

Synthetic Microbial Communities Enhance Pepper Growth and Root Morphology by Regulating Rhizosphere Microbial Communities.

Microorganisms

January 2025

Hunan Provincial Key Laboratory of Agroecological Engineering, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.

Synthetic microbial community (SynCom) application is efficient in promoting crop yield and soil health. However, few studies have been conducted to enhance pepper growth via modulating rhizosphere microbial communities by SynCom application. This study aimed to investigate how SynCom inoculation at the seedling stage impacts pepper growth by modulating the rhizosphere microbiome using high-throughput sequencing technology.

View Article and Find Full Text PDF

Grazing Intensity Modifies Soil Microbial Diversity and Their Co-Occurrence Networks in an Alpine Steppe, Central Tibet.

Microorganisms

January 2025

Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.

Grazing intensity is one of the crucial anthropogenic activities on alpine grasslands. However, how grazing intensity affects soil microorganism diversities and their co-occurrence networks in alpine steppe remains uncertain. We carried out a controlled grazing experiment (null grazing, CK; moderate grazing, MG; and heavy grazing, HG) on a typical alpine steppe in the Lhasa River Basin, Central Tibet, China.

View Article and Find Full Text PDF

The bulbs of the lily plant Miq. possess substantial medicinal properties for relieving coughs and clearing the lungs. However, excessive pursuit of yield during cultivation has led to a decrease in medicinal ingredients.

View Article and Find Full Text PDF

Nitrogen inputs for sustainable crop production for a growing population require the enhancement of biological nitrogen fixation. Efforts to increase biological nitrogen fixation include bioprospecting for more effective nitrogen-fixing bacteria. As bacterial nitrogenases are extremely sensitive to oxygen, most primary isolation methods rely on the use of semisolid agar or broth to limit oxygen exposure.

View Article and Find Full Text PDF

The genus comprises important soil bacteria that are often associated with the crop rhizospheres, but its physiological traits remain poorly understood. This study characterizes sp. TT6, isolated from human skin, with a focus on its metabolic and environmental adaptations.

View Article and Find Full Text PDF

Effects of Different Nitrogen Fertilizer Application Rates on Soil Microbial Structure in Paddy Soil When Combined with Rice Straw Return.

Microorganisms

January 2025

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.

Metagenomic sequencing of the microbial soil community was used to assess the effect of various nitrogen fertilizer treatments in combination with constant rice straw return to the soil in the tiller layer of Northeast China's black paddy soil used for rice production. Here, we investigated changes in the composition, diversity, and structure of soil microbial communities in the soil treated with four amounts of nitrogen fertilizers (53, 93, 133, and 173 kg/ha) applied to the soil under a constant straw return of 7500 kg/ha, with a control not receiving N. The relationships between soil microbial community structure and soil physical and chemical properties were determined.

View Article and Find Full Text PDF

The present study examined the effect of the three different altitudes on the enzymatic activity and the prokaryotic communities of the rhizosphere of (L.) A.DC.

View Article and Find Full Text PDF

Biocontrol Potential of Rhizospheric Bacillus Strains Against Jagger Causing Lettuce Drop.

Microorganisms

January 2025

State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.

Phytopathogenic Jagger causes lettuce drop, a destructive soil-borne disease. As potential biocontrol agents for this disease, 2 of 31 bacterial strains isolated from soil samples from fields containing Jagger were identified using in vitro antagonistic assays against Jagger. Bioactivity experiments showed that Bac20 had higher inhibitory activity against Jagger than Bac45.

View Article and Find Full Text PDF

Increasing nitrogen (N) addition induces soil nutrient imbalances and is recognized as a major regulator of soil microbial communities. However, how soil bacterial abundance, diversity, and community composition respond to exogenous N addition in nutrient-poor and generally N-limited regions remains understudied. In this study, we investigated the effects of short-term exogenous N additions on soil bacterial communities using quantitative polymerase chain reaction (PCR) and Illumina Miseq sequencing in an in situ N addition field experiment.

View Article and Find Full Text PDF

Ammonia-Assimilating Bacteria Promote Wheat () Growth and Nitrogen Utilization.

Microorganisms

December 2024

Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China.

Nitrogen fertilizers in agriculture often suffer losses. Ammonia-assimilating bacteria can immobilize ammonia and reduce these losses, but they have not been used in agriculture. This study identified an ammonia-assimilating strain, sp.

View Article and Find Full Text PDF

A Comparison of Rice Root Microbial Dynamics in Organic and Conventional Paddy Fields.

Microorganisms

December 2024

Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan.

The assembly of plant root microbiomes is a dynamic process. Understanding the roles of root-associated microbiomes in rice development requires dissecting their assembly throughout the rice life cycle under diverse environments and exploring correlations with soil properties and rice physiology. In this study, we performed amplicon sequencing targeting fungal ITS and the bacterial 16S rRNA gene to characterize and compare bacterial and fungal community dynamics of the rice root endosphere and soil in organic and conventional paddy fields.

View Article and Find Full Text PDF

Cooperation Between and for Carbendazim Degradation.

Microorganisms

December 2024

Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.

Carbendazim (CBZ) is a fungicide widely used on different crops, including soybeans, cereals, cotton, tobacco, peanuts, and sugar beet. Excessive use of this xenobiotic causes environmental deterioration and affects human health. Microbial metabolism is one of the most efficient ways of carbendazim elimination.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the microbial diversity and metal accumulation in different ecological sites around Lubumbashi, a copper-rich area in Africa.
  • Four distinct sites were investigated: a residential area, an agricultural dry field, an agricultural wetland, and a remediated tailing, with the tailing showing the highest metal concentrations.
  • The findings highlight specific bacterial and fungal compositions at each site, indicating a relationship between environmental conditions and microbial communities, while the investigated plant species showed potential for metal phytoextraction despite being an excluder for copper and cobalt.
View Article and Find Full Text PDF