76 results match your criteria: "Singapore Institute of Manufacturing Technology SIMTech[Affiliation]"
Macromol Biosci
December 2024
Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), Singapore, 138669, Singapore.
Third-degree burns result in extensive damage to the skin's epidermal and dermal layers, with limited treatment options available. Currently, xenogeneic collagen-based skin grafts are used as scaffolds to integrate into the wound bed and provide a template for neodermis formation. Existing commercial products like Integra dermal templates rely on a time-consuming and variable dehydrothermal (DHT) crosslinking process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Materials and Energy, Southwest University, 1 Tiansheng Road, Chongqing 400715, P. R. China.
Seawater batteries (SWBs) are green aqueous power sources with great potential in marine applications. So far, SWBs are mainly built on rigid substrates, which hinders their adaptability to marine textile applications. Herein, we constructed a rechargeable yarn-shaped SWB consisting of nickel hexacyanoferrate (Ni-HCF)-modified carbon yarn (positive electrode), glass fiber diaphragm, and polyimide (PI)-modified carbon yarn (negative electrode).
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States.
Here we demonstrate direct ink write (DIW) additive manufacturing of carbon nanotube (CNT)/phenolic composites with heat dissipation and excellent electromagnetic interference (EMI) shielding capabilities without curing-induced deformation. Such polymer composites are valuable for protecting electronic devices from overheating and electromagnetic interference. CNTs were used as a multifunctional nanofiller to improve electrical and thermal conductivity, printability, stability during curing, and EMI shielding performance of CNT/phenolic composites.
View Article and Find Full Text PDFBiotechnol Notes
November 2023
Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-04, Singapore, 138634, Republic of Singapore.
Dengue fever is caused by any of the four serotypes of dengue viruses, DENV-1, DENV-2, DENV-3 and DENV-4 spread by mosquito bites and is important to distinguish between them due to lack of cross-protective neutralizing antibodies for each serotype. Secondary infections also put individuals at higher risk for severe dengue illness than those who have not been previously infected. Current preferred assays include reverse transcription-PCR (RT-PCR) and ELISA.
View Article and Find Full Text PDFBiomater Adv
January 2025
Additive Manufacturing Division, Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, 636732 Singapore, Singapore. Electronic address:
Magnesium (Mg) alloys are a promising candidate for synthetic bone tissue substitutes. In bone tissue engineering, achieving a balance between pore characteristics that facilitate biological functions and the essential stiffness required for load-bearing functions is extremely challenging. This study employs binder jet additive manufacturing to fabricate an interconnected porous structure in Mg alloys that mimics the microporosity and mechanical properties of human cortical bone types.
View Article and Find Full Text PDFMaterials (Basel)
September 2024
Key Laboratory of Hunan Province of Equipment Safety Service Technology under Extreme Environment, Hengyang 421001, China.
Polymers (Basel)
July 2024
Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16, Connexis North Tower, Singapore 138632, Singapore.
A comprehensive modeling framework for the thermoforming of polymer matrix woven laminate composite was developed. Two numerical indicators, the slip path length and traction magnitude, have been identified to be positively correlated to matrix smearing and wrinkling defects. The material model has been calibrated with picture-frame experimental results, and the prediction accuracy for intra-ply shear and thickness distribution was examined with measurements of the physically formed parts.
View Article and Find Full Text PDFAdv Mater
August 2024
Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 5 Cleantech Loop, #01-01 CleanTech Two Block B, Singapore, 636732, Republic of Singapore.
Additive manufacturing (AM) facilitates the creation of materials with unique microstructural features and distinctive phenomena as compared to conventional manufacturing methods. Among the various well-fabricated AM alloys, aluminum alloys garner substantial attention due to their extensive applications in the automotive and aerospace industries. In this work, an Al6xxx alloy is successfully fabricated with outstanding performance.
View Article and Find Full Text PDFAdv Mater
August 2024
Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
In recent years, there has been widespread adoption of machine learning (ML) technologies to unravel intricate relationships among diverse parameters in various additive manufacturing (AM) techniques. These ML models excel at recognizing complex patterns from extensive, well-curated datasets, thereby unveiling latent knowledge crucial for informed decision-making during the AM process. The collaborative synergy between ML and AM holds the potential to revolutionize the design and production of AM-printed parts.
View Article and Find Full Text PDFACS Nano
February 2024
School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798.
Cell-free RNAs and extracellular vesicles (EVs) are valuable biomarkers in liquid biopsies, but they are prone to preanalytical variabilities such as nonstandardized centrifugation or blood degradation. Herein, we report a high-throughput and label-free inertial microfluidic device (ExoArc) for isolation of platelet-free plasma from blood for RNA and EV analysis. Unlike conventional inertial microfluidic devices widely used for cell sorting, a submicrometer size cutoff (500 nm) was achieved which completely removed all leukocytes, RBCs, platelets, and cellular debris based on differential lateral migration induced by Dean vortices.
View Article and Find Full Text PDFPLoS One
November 2023
Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore.
Methicillin-resistant Staphylococcus aureus (MRSA) causes a wide range of hospital and community-acquired infections worldwide. MRSA is associated with worse clinical outcomes that can lead to multiple organ failure, septic shock, and death, making timely diagnosis of MRSA infections very crucial. In the present work, we develop a method that enables the positive enrichment of bacteria from spiked whole blood using protein coated magnetic beads, followed by their lysis, and detection by a real-time multiplex PCR directly.
View Article and Find Full Text PDFTrends Biotechnol
April 2024
Biomanufacturing Technology, Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), 20 Biopolis Way, Singapore 138668, Singapore. Electronic address:
Technological advances have increasingly provided more and better treatment options for patients with severe burns. Here, we provide a bird's-eye view of the product development process for third-degree burn wounds with considerations of the critical interaction with regulatory bodies, existing technological gaps, and future directions for skin substitutes.
View Article and Find Full Text PDFNat Commun
October 2023
Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK.
In metallurgy, mechanical deformation is essential to engineer the microstructure of metals and to tailor their mechanical properties. However, this practice is inapplicable to near-net-shape metal parts produced by additive manufacturing (AM), since it would irremediably compromise their carefully designed geometries. In this work, we show how to circumvent this limitation by controlling the dislocation density and thermal stability of a steel alloy produced by laser powder bed fusion (LPBF) technology.
View Article and Find Full Text PDFBiosensors (Basel)
September 2023
Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-04, Singapore 138634, Singapore.
Auxotrophic primates like human beings rely on exogenous dietary vitamin B supplementation to meet their metabolic demands. Folates play a crucial role in nucleotide synthesis and DNA methylation. Maternal folate deficiency causes several pregnancy-related complications, perinatal defects, and early childhood cognitive impairments.
View Article and Find Full Text PDFSensors (Basel)
September 2023
School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China.
Unmanned aerial vehicle-aided visible light communication (UAV-VLC) can be used to realize joint emergency illumination and communication, but the endurance of UAV is a key limiting factor. In order to overcome this limitation, this paper proposes the use of an angle diversity transmitter (ADT) to enhance the energy efficiency of the UAV-VLC system. The ADT is designed with one bottom LED and several evenly distributed inclined side LEDs.
View Article and Find Full Text PDFAdv Healthc Mater
December 2023
Faculty of Dentistry, National University of Singapore, Singapore, 119085, Singapore.
Gingiva plays a crucial barrier role at the interface of teeth, tooth-supporting structures, microbiome, and external agents. To mimic this complex microenvironment, an in vitro microphysiological platform and biofabricated full-thickness gingival equivalents (gingiva-on-chip) within a vertically stacked microfluidic device is developed. This design allowed long-term and air-liquid interface culture, and host-material interactions under flow conditions.
View Article and Find Full Text PDFSci Rep
May 2023
School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore.
Adv Sci (Weinh)
July 2023
Research Institution for Biomimetics and Soft Matter, The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, The State Key Laboratory of Marine Environmental Science (MEL), College of Ocean and Earth Sciences, Shenzhen Research Institute of Xiamen University, Xiamen University, 422 Siming Nan Road, Xiamen, 361005, People's Republic of China.
Ionogels prepared from ionic liquid (IL) have the characteristics of nonevaporation and stable performance relative to traditional hydrogels. However, the conductivities of commonly used ionogels are at very low relative to traditional hydrogels because the large sizes of the cation and anion in an IL impedes ion migration in polymer networks. In this study, ultradurable ionogels with suitable mechanical properties and high conductivities are prepared by impregnating IL into a safe, environmentally friendly water-based polyurethane (WPU) network by mimicking the ion transport channels in the phospholipid bilayer of the cell membrane.
View Article and Find Full Text PDFFront Robot AI
April 2023
Advanced Remanufacturing and Technology Centre (ARTC), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.
Chem Rev
April 2023
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Vanadium oxides with multioxidation states and various crystalline structures offer unique electrical, optical, optoelectronic and magnetic properties, which could be manipulated for various applications. For the past 30 years, significant efforts have been made to study the fundamental science and explore the potential for vanadium oxide materials in ion batteries, water splitting, smart windows, supercapacitors, sensors, and so on. This review focuses on the most recent progress in synthesis methods and applications of some thermodynamically stable and metastable vanadium oxides, including but not limited to VO, VO, VO, VO, VO, VO, VO, and VO.
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
Singapore Institute of Manufacturing Technology (SIMTech), A*Star, 2 Fusionopolis Way, Singapore 138634, Singapore.
Heliyon
October 2022
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 11 Biopolis Way, #02-02, Helios, 138667, Singapore.
To interrupt SARS-CoV-2 transmission chains, Ultraviolet-C (UVC) irradiation has emerged as a potential disinfection tool to aid in blocking the spread of coronaviruses. While conventional 254-nm UVC mercury lamps have been used for disinfection purposes, other UVC wavelengths have emerged as attractive alternatives but a direct comparison of these tools is lacking with the inherent mechanistic properties unclear. Our results using human coronaviruses, hCoV-229E and hCoV-OC43, have indicated that 277-nm UVC LED is most effective in viral inactivation, followed by 222-nm far UVC and 254-nm UVC mercury lamp.
View Article and Find Full Text PDFFront Bioeng Biotechnol
September 2022
The Vijay Lab, Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
J Biomed Mater Res A
January 2023
Department of Materials Science & Engineering, National University of Singapore, Singapore, Singapore.
Int J Mol Sci
August 2022
Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 11 Biopolis Way, #02-02, Helios, Singapore 138667, Singapore.
Ultraviolet (UV) germicidal tools have recently gained attention as a disinfection strategy against the COVID-19 pandemic, but the safety profile arising from their exposure has been controversial and impeded larger-scale implementation. We compare the emerging 222-nanometer far UVC and 277-nanometer UVC LED disinfection modules with the traditional UVC mercury lamp emitting at 254 nm to understand their effects on human retinal cell line ARPE-19 and HEK-A keratinocytes. Cells illuminated with 222-nanometer far UVC survived, while those treated with 254-nanometer and 277-nanometer wavelengths underwent apoptosis via the JNK/ATF2 pathway.
View Article and Find Full Text PDF