42 results match your criteria: "Shumakov National Medical Research Center of Transplantology and Artificial Organs[Affiliation]"
Producing a tissue-engineered pancreas based on a tissue-specific scaffold from a decellularized pancreas, imitating the natural pancreatic tissue microenvironment and the islets of Langerhans, is one of the approaches to treating patients with type 1 diabetes mellitus (T1DM). The aim of this work was to investigate the ability of a fine-dispersed tissue-specific scaffold (DP scaffold) from decellularized human pancreas fragments to support the islets' survival and insulin-producing function when injected in a streptozotocin-induced diabetic rat model. The developed decellularization protocol allows us to obtain a scaffold with a low DNA content (33 [26; 38] ng/mg of tissue, < 0.
View Article and Find Full Text PDFThe umbilical cord is a material that enhances regeneration and is devoid of age-related changes in the extracellular matrix (ECM). The aim of this work was to develop a biodegradable scaffold from a decellularized human umbilical cord (UC-scaffold) to heal full-thickness wounds. Decellularization was performed with 0.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
Laboratory of Cell Biology, Institute of Biomedical Chemistry, Moscow 119121, Russia.
Articular cartilage damage still remains a major problem in orthopedical surgery. The development of tissue engineering techniques such as autologous chondrocyte implantation is a promising way to improve clinical outcomes. On the other hand, the clinical application of autologous chondrocytes has considerable limitations.
View Article and Find Full Text PDFActa Naturae
January 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997 Russian Federation.
Modern biomedical research often requires a three-dimensional microscopic analysis of the ultrastructure of biological objects and materials. Conceptual technical and methodological solutions for three-dimensional structure reconstruction are needed to improve the conventional optical, electron, and probe microscopy methods, which to begin with allow one to obtain two-dimensional images and data. This review discusses the principles and potential applications of such techniques as serial section transmission electron microscopy; techniques based on scanning electron microscopy (SEM) (array tomography, focused ion beam SEM, and serial block-face SEM).
View Article and Find Full Text PDFThe effect of recombinant spidroin (RS) hydrogel (HG) on anterior epithelial cells and keratocytes of the human cornea was studied in vitro. Corneal injuries are highly prevalent in developing countries according to the World Health Organization. Various technologies have recently been proposed to restore the damaged surface of the cornea.
View Article and Find Full Text PDFDokl Biol Sci
December 2023
Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Moscow, Russia.
Nanoscale morphological features of branched processes of glial cells may be of decisive importance for neuron-astrocyte interactions in health and disease. The paper presents the results of a correlation analysis of images of thin processes of astrocytes in nervous tissue of the mouse brain, which were obtained by scanning probe microscopy (SPM) and transmission electron microscopy (TEM) with high spatial resolution. Samples were prepared and imaged using a unique hardware combination of ultramicrotomy and SPM.
View Article and Find Full Text PDFActa Naturae
January 2023
V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, 123182 Russian Federation.
Transforming growth factor-β1 (TGF-β1), a cytokine with immunosuppressive and pro-fibrogenic activity, is a potential marker of infection, liver transplant rejection, and fibrosis. Its levels in the blood and tissues depend on many factors; however, the role of gene polymorphism is still unclear. In this work, the distribution frequency of three single nucleotide polymorphism (SNP) variants of the gene, namely rs1800469, rs1800470, and rs1800471, was studied in children with end-stage liver disease (ESLD).
View Article and Find Full Text PDFBiomimetics (Basel)
October 2023
Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia.
Cardiac arrhythmias are a major cause of cardiovascular mortality worldwide. Many arrhythmias are caused by reentry, a phenomenon where excitation waves circulate in the heart. Optical mapping techniques have revealed the role of reentry in arrhythmia initiation and fibrillation transition, but the underlying biophysical mechanisms are still difficult to investigate in intact hearts.
View Article and Find Full Text PDFInt J Mol Sci
June 2023
Laboratory of Experimental and Cellular Medicine, Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia.
Myocardial remodeling is an inevitable risk factor for cardiac arrhythmias and can potentially be corrected with cell therapy. Although the generation of cardiac cells ex vivo is possible, specific approaches to cell replacement therapy remain unclear. On the one hand, adhesive myocyte cells must be viable and conjugated with the electromechanical syncytium of the recipient tissue, which is unattainable without an external scaffold substrate.
View Article and Find Full Text PDFDeveloping technologies for efficient targeted drug delivery for oncotherapy requires new methods to analyze the features of micro- and nanoscale distributions of antitumor drugs in cells and tissues. A new approach to three-dimensional analysis of the intracellular distribution of cytostatics was developed using fluorescence scanning optical-probe nanotomography. A correlative analysis of the nanostructure and distribution of injected doxorubicin in MCF-7 human breast adenocarcinoma cells revealed the features of drug penetration and accumulation in the cell.
View Article and Find Full Text PDFSerious work is being carried out in the world in the field of combating antibiotic resistance: reducing the prescribing of antibiotics, banning the use of antibiotics as stimulators of animal growth, improving infection control. Antimicrobial resistance is systematically monitored not only in every medical center, but also at the national level. The collected data is successfully used to implement local and national recommendations on the optimal use of antibiotics.
View Article and Find Full Text PDFLife (Basel)
February 2023
The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 1 Shchukinskaja St., 123182 Moscow, Russia.
Previously, the authors showed that the application of the aminodihydrophthalazinedione sodium (ADPS) immunomodulator transdermal therapeutic system (TTS) to laboratory animals provides bioavailability analogous to the intramuscular administration of this drug at the same dose. At the same time, its maximum blood concentration is significantly reduced, and the retention time of the drug in the body is increased more than 10-fold, which can contribute to prolonging the drug effect. The aim of the work was to identify a possible positive effect of the transdermal administration of the ADPS immunomodulator on reparative liver regeneration on an experimental model of extensive liver resection (ELR).
View Article and Find Full Text PDFMicromachines (Basel)
December 2022
Moscow Institute of Physics and Technology, Institutskiy Lane 9, 141700 Dolgoprudny, Russia.
Induced pluripotent stem cells (iPSCs) constitute a potential source of patient-specific human cardiomyocytes for a cardiac cell replacement therapy via intramyocardial injections, providing a major benefit over other cell sources in terms of immune rejection. However, intramyocardial injection of the cardiomyocytes has substantial challenges related to cell survival and electrophysiological coupling with recipient tissue. Current methods of manipulating cell suspensions do not allow one to control the processes of adhesion of injected cells to the tissue and electrophysiological coupling with surrounding cells.
View Article and Find Full Text PDFInt J Mol Sci
December 2022
The Shumakov National Medical Research Center of Transplantology and Artificial Organs, 123182 Moscow, Russia.
A significant lack of donor organs restricts the opportunity to obtain tissue-specific scaffolds for tissue-engineering technologies. One of the acceptable solutions is the development of decellularization protocols for a human donor pancreas unsuitable for transplantation. A protocol of obtaining a biocompatible tissue-specific scaffold from decellularized fragments with pronounced human pancreas lipomatosis signs with preserved basic fibrillary proteins of a pancreatic tissue extracellular matrix was developed.
View Article and Find Full Text PDFJ Biomed Mater Res A
April 2023
Department for Biomedical Technologies and Tissue Engineering, The Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russia.
One of the approaches to restoring the structure of damaged cartilage tissue is an intra-articular injection of tissue-engineered medical products (TEMPs) consisting of biocompatible matrices loaded with cells. The most interesting are the absorbable matrices from decellularized tissues, provided that the cellular material is completely removed from them with the maximum possible preservation of the structure and composition of the natural extracellular matrix. The present study investigated the mechanical, biochemical, and biological properties of decellularized porcine cartilage microparticles (DCMps) obtained by techniques, differing only in physical treatments, such as freeze-thaw cycling (Protocol 1), supercritical carbon dioxide fluid (Protocol 2) and ultrasound (Protocol 3).
View Article and Find Full Text PDFPharmaceutics
October 2022
Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, 1 Shchukinskaya Street, 123182 Moscow, Russia.
The development of advanced biomaterials and constructs for accelerated recovery of damaged tissues is a key direction in regenerative medicine. Biocompatible scaffolds based on natural biopolymers are widely used for these tasks. Organ decellularization enables obtaining a cell-free extracellular matrix (ECM) with preserved composition and biological activity.
View Article and Find Full Text PDFNoncoding RNA Res
December 2022
Director of Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, Russian Federation.
Aims: Early post-transplant complications such as acute graft rejection and infections are associated with high morbidity and mortality of heart and lung transplant recipients who are in vital need of immunosuppressive therapy. MiR-424 is a member of the miR-16 family, which plays an important physiological role in the development of cardiovascular and respiratory pathology, is involved in the regulation of monocyte and macrophage differentiation, and has an immunosuppressive potential. The aim of the study was to determine the diagnostic value of circulating miR-424 as a potential biomarker of post-transplant complications in heart and lung transplant recipients.
View Article and Find Full Text PDFPolymers (Basel)
August 2022
Federal State Budgetary Institution "Shumakov National Medical Research Center of Transplantology and Artificial Organs" of the Ministry of Health of the Russian Federation, 123182 Moscow, Russia.
: In this study, we seek to check if recombinant spidroin rS1/9 is applicable for cell-engineering construct development. Novel technologies of cell and tissue engineering are relevant for chronic liver failure management. Liver regeneration may represent one of the possible treatment options if a cell-engineered construct (CEC) is used.
View Article and Find Full Text PDFThe development of effective biomedical technologies using magnetic nanoparticles (MNPs) for the tasks of oncotherapy and nanodiagnostics requires the development and implementation of new methods for the analysis of micro- and nanoscale distributions of MNPs in the volume of cells and tissues. The paper presents a new approach to three-dimensional analysis of MNP distributions - scanning magnetic force nanotomography as applied to the study of tumor tissues. Correlative reconstruction of MNP distributions and nanostructure features of the studied tissues made it possible to quantitatively estimate the parameters of three-dimensional distributions of composite nanoparticles based on silicon and iron oxide obtained by femtosecond laser ablation and injected intravenously and intratumorally into tumor tissue samples of B16/F1 mouse melanoma.
View Article and Find Full Text PDFInt J Mol Sci
February 2022
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 16/10 Miklukho-Maklaya Str., 117997 Moscow, Russia.
Multiple studies have demonstrated that various nanoparticles (NPs) stimulate osteogenic differentiation of mesenchymal stem cells (MSCs) and inhibit adipogenic ones. The mechanisms of these effects are not determined. The aim of this paper was to estimate Wharton's Jelly MSCs phenotype and humoral factor production during tri-lineage differentiation per se and in the presence of silicon-gold NPs.
View Article and Find Full Text PDFActa Naturae
January 2021
Shumakov National Medical Research Center of Transplantology and Artificial Organs, Moscow, 123182 Russia.
The transforming growth factor β1 (TGFβ1), whose level may depend on the polymorphism of the TGFB1 gene, is involved in the formation of myocardial fibrosis. Myocardial fibrosis in a cardiac allograft may lead to a heart's structural and functional remodeling and subsequent dysfunction. The frequency of occurrence of alleles and genotypes of the TGFB1 gene polymorphic regions rs1800469, rs1800470, and rs1800471 in heart transplant recipients and their association with graft myocardial fibrosis were analyzed.
View Article and Find Full Text PDFPolymers (Basel)
November 2021
Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France.
Fluorescent imaging is widely used in the diagnosis and tracking of the distribution, interaction, and transformation processes at molecular, cellular, and tissue levels. To be detectable, delivery systems should exhibit a strong and bright fluorescence. Quantum dots (QDs) are highly photostable fluorescent semiconductor nanocrystals with wide absorption spectra and narrow, size-tunable emission spectra, which make them suitable fluorescent nanolabels to be embedded into microparticles used as bioimaging and theranostic agents.
View Article and Find Full Text PDFCreation of new effective bio-artificial structures for tissue engineering and regenerative medicine requires development and implementation of new technological approaches for analysis of micro- and nanostructural features of constructs based on biomaterials and their interaction with cells. A new method of three-dimensional multiparametric analysis of nanostructure, scanning optical probe nanotomography, is presented in this paper, applied to the analysis of cells and biomaterials. Correlative reconstruction of fluorescent marker distributions and nanostructure features allows quantitative evaluation of a number of parameters of three-dimensional nanomorphology of fibroblasts and human hepatocarcinoma cells Hep-G2, adhered to biodegradable scaffolds based on silk fibroin.
View Article and Find Full Text PDFPharmaceutics
October 2021
Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya ul. 1, 123182 Moscow, Russia.
The main goal of our research was to fabricate electrospun scaffolds from three different silk proteins-silk fibroin from silkworm cocoons and two recombinant spidroins, rS2/12 and rS2/12-RGDS-and to perform a comparative analysis of the structure, biological properties, and regenerative potential of the scaffolds in a full-thickness rat skin wound model. The surface and internal structures were investigated using scanning electron microscopy and scanning probe nanotomography. The structures of the scaffolds were similar.
View Article and Find Full Text PDFPharmaceutics
September 2021
Academician V.I. Shumakov National Medical Research Center of Transplantology and Artificial Organs, Ministry of Health of the Russian Federation, Schukinskaya ul. 1, 123182 Moscow, Russia.
A comparative analysis of the structure and biological properties of silk fibroin constructions was performed. Three groups of constructions were obtained: films obtained by casting an aqueous solution of silk fibroin and electrospun microfibrous scaffolds based on silk fibroin, with the addition of 30% gelatin per total protein weight. The internal structures of the films and single fibers of the microfibrous scaffolds consisted of densely packed globule structures; the surface area to volume ratios and volume porosities of the microfibrous scaffolds were calculated.
View Article and Find Full Text PDF