642 results match your criteria: "ShiYou University[Affiliation]"
Sci Rep
January 2025
School of Petroleum Engineering, Xi 'an Shiyou University, Xi'an, Shaanxi, China.
In order to determine the influence of different factors on the CO huff-and-puff displacement effect, a CO huff-and-puff experiment was carried out with Chang 6 tight sandstone samples in Ordos Basin as the research object. Combined with nuclear magnetic resonance technology, the influences of injection pressure, cycle numbers and soaking time on the CO huff-and-puff effect were evaluated, and the optimal CO huff-and-puff parameters were optimized. The microscopic degree of crude oil production in different scale pores was quantitatively characterized.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Engineering Research Center of Oil and Gas Field Chemistry, Universities of Shaanxi Provence, Xi'an Shiyou University, Xi'an 710065, China.
In order to solve the problems of long dissolution and preparation time, cumbersome preparation, and easy moisture absorption and deterioration during storage or transportation, acrylamide (AM), acrylic acid (AA), sodium p-styrene sulfonate (SSS), and cetyl dimethylallyl ammonium chloride (DMAAC-16) were selected as raw materials, and the emulsion thickener P(AM/AA/SSS), which can be instantly dissolved in water and rapidly thickened, was prepared by the reversed-phase emulsion polymerization method. DMAAC-16, the influence of emulsifier dosage, oil-water ratio, monomer molar ratio, monomer dosage, aqueous pH, initiator dosage, reaction temperature, reaction time, and other factors on the experiment was explored by a single-factor experiment, and the optimal process was determined as follows: the oil-water volume ratio was 0.4, the emulsifier dosage was 7% of the oil phase mass, the initiator dosage was 0.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
This paper developed an efficient microbial activator formula and conducted an in-depth study on its efficacy and mechanism in promoting the degradation of petroleum hydrocarbons in oil-contaminated soil. A 60-day microbial remediation experiment conducted on oily soil revealed that the microbial activators significantly boosted the activities of dehydrogenase and catalase, subsequently speeding up the degradation of petroleum hydrocarbons in the soil. The overall degradation rate reached as high as 71.
View Article and Find Full Text PDFInorg Chem
January 2025
College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
Luminescent lanthanide compounds stand out for their distinctive characteristics including narrow emission bands, substantial Stokes shifts, high quantum yields, and unique luminescent colors. However, Ln is highly susceptible to vibrational quenching from X-H (X = O/N) high-energy oscillators in the embedded organic antenna, resulting in significant nonradiative energy dissipation of the D excited states of Ln. Herein, we introduce a strategy based on supramolecular interactions to modulate the nonradiative transitions in a new Zn-Tb heterometallic compound, [ZnTb(HL)(NO)Cl]·2CHCN·HO (), based on a phenyl-substituted pyrazolinone-modified salicylamide-imide ligand ().
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
Recent advancements in C-S bond formation electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date.
View Article and Find Full Text PDFACS Omega
January 2025
School of Petroleum Engineering, Xi'an Shiyou University, Xi'an, Shaanxi 710016, China.
By analyzing the chemical characteristics of the formation water in the tight sandstone reservoirs of the P2x8 and P1s1 in the southern Ordos Basin, combined with rock mineral composition, reservoir physical properties, and well gas testing data, the genesis mechanism of formation water and its guiding role in gas reservoir development were discussed. The results show that the formation water is derived from the mixture of syngenetic seawater and meteoric water and has undergone remarkable modification by water-rock interactions, showing characteristics of Ca enrichment and Mg and SO depletion. The albitization of plagioclase in reservoir rock components causes Ca excess and Na deficiency in formation water, while the chloritization of albite leads to the increase of Na.
View Article and Find Full Text PDFACS Omega
January 2025
School of Petroleum Engineering, Xi 'an Shiyou University, No. 18, East Section of Electronic second Road, Yanta District, Xi'an, Shaanxi 710054, China.
This study examined the effects of salt content and salt type on the properties of the hydroxypropyl guar gum fracturing fluid. In this study, we conducted a thorough analysis of the impact that various ions in seawater have on the performance of fracturing fluids. We identified the cross-linked polymer that performs optimally at a specific concentration of the binding agent.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Xi'an Rare Metal Materials Institute Co., Ltd., Xi'an 710016, China.
One of the long-standing challenges in the field of titanium matrix composites is achieving the synergistic optimization of high strength and excellent ductility. When pursuing high strength characteristics in materials, it is often difficult to consider their ductility. Therefore, this study prepared a Ti1400 alloy and in situ synthesized TiC-reinforced (TiC + Ti1400)/TC4 composites using low-energy ball milling and spark plasma sintering technology, followed by hot rolling, to obtain titanium matrix composites with excellent mechanical properties.
View Article and Find Full Text PDFSci Rep
December 2024
College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, China.
Sci Rep
December 2024
Xi'an Shiyou University School of Electronic Engineering, Xi'an, 710065, China.
The expressway green channel is an essential transportation policy for moving fresh agricultural products in China. In order to extract knowledge from various records, this study presents a cutting-edge approach to extract information from textual records of failure cases in the vertical field of expressway green channel. We proposed a hybrid approach based on BIO labeling, pre-trained model, deep learning and CRF to build a named entity recognition (NER) model with the optimal prediction performance.
View Article and Find Full Text PDFSci Rep
December 2024
Xi'an Key Laboratory of Wellbore Integrity Evaluation, Xi'an Shiyou University, Xi'an, 710065, China.
Rolling bearings of the vibration exciter are prone to failure due to long-term high amplitude alternating impact loads, causing economic losses and threatening production safety. The heavy environmental noise during the operation of the vibration exciter and the high vibration level generated by the eccentric block make the weak bearing fault features submerged and difficult to extract. Teager-Kaiser energy operator is a popular method for extracting bearing fault features.
View Article and Find Full Text PDFSci Rep
December 2024
China Construction Eighth Engineering Division Rail Transit Construction Co., Ltd, Nanjing, 210018, Jiangsu, China.
The existing calculation method for the surrounding rock pressure of shallow buried bias tunnel fails to account for the impact of the progressive failure characteristics of the surrounding rock and slope creep, thereby neglecting the additional pressure arising from slope creep. Therefore, the progressive instability failure mode of the surrounding rock of shallow buried bias tunnel was obtained by numerical simulation. Based on this, the theoretical analysis model of the additional pressure of shallow buried bias tunnel was established, and the calculation formula of the additional pressure was derived.
View Article and Find Full Text PDFSci Rep
December 2024
School of Petroleum Engineering, Xi'an Shiyou University, Xi'an, 710065, China.
Chem Soc Rev
December 2024
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, P. R. China.
As an ideal eco-friendly Pb-free optoelectronic material, Sn-based perovskites have made significant progress in the field of photovoltaics, and the highest power conversion efficiency (PCE) of Sn-based perovskite solar cells (PSCs) has been currently approaching 16%. In the course of development, various strategies have been proposed to improve the PCE and stability of Sn-based PSCs by solving the inherent problems of Sn, including high Lewis acidity and easy oxidation. Notably, the recent breakthrough comes from the development of heteroatomic coordination molecules to control the characteristics of Sn-based perovskites, which are considered to be vital for realizing efficient PSCs.
View Article and Find Full Text PDFACS Omega
December 2024
Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi'an, Shaanxi Province 710000, P. R. China.
Supercritical-dense phase CO pipeline transportation has been proven to have excellent economic and safety benefits for long-distance CO transportation in large-scale. Hydrates are easily generated in the high-pressure and low-temperature sections, resulting in blockage, so it is necessary to build the prediction model for hydrate formation in the long-distance CO pipeline transportation. In the prediction model of hydrate formation of our work, the phase equilibrium was determined by the Chen-Guo model, and the lateral growth of hydrate was calculated by the comprehensive growth model, and the hydrate growth was estimated by analogy with the condensation process.
View Article and Find Full Text PDFSmall
December 2024
School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Ultrathin polymer membranes on porous substrates exhibit excellent gas and ion permeability and have important applications in many fields, such as membrane separation and batteries. However, there is still a lack of facile and general methods for the direct preparation of ultrathin polymer membranes on porous substrates, especially from polymer solutions. Within this work, a new strategy to fabricate centimeter-size ultrathin polymer membranes (thickness down to 16 nm) is presented directly on porous supports by using the liquid-liquid interfacial spin-coating technique.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Soil is the place where human beings, plants, and animals depend on for their survival and the link between the various ecological layers. Groundwater is an important component of water resources and is one of the most important sources of water for irrigated agriculture, industry, mining and cities because of its stable quantity and quality. Soil and groundwater are important strategic resources highly valued by countries around the world.
View Article and Find Full Text PDFACS Nano
December 2024
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China.
Over the past decade, lead halide perovskites (LHPs), an emerging class of organic-inorganic ionic-type semiconductors, have drawn worldwide attention, which injects vitality into next-generation optoelectronics. Facilely tunable bandgap is one of the fascinating features of LHPs, enabling them to be widely used in various nano/microscale applications. Notably, wide-bandgap (WBG) LHPs have been considered as promising alternatives to traditional WBG semiconductors owing to the merits of low-cost, solution processability, superior optoelectronic characteristics, and flexibility, which could improve the cost-effectiveness and expand the application scenarios of traditional WBG devices.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
The precise measurement of inner dimensions and contour accuracy is required for deep-hole parts, particularly during the manufacturing process, to monitor quality and obtain real-time error parameters. However, on-machine measurement is challenging due to the limited inner space of deep holes. This study proposes an automatic on-machine measuring apparatus for assessing inner diameter, straightness, and roundness errors.
View Article and Find Full Text PDFPLoS One
December 2024
School of Material Science and Engineering, Xi'an Shiyou University, Xi'an, China.
The background of pipeline weld surface defect image is complex, and the defect size is small. Aiming at the small defect size in the weld image, which is easy to cause missed detection and false detection, a lightweight target detection algorithm based on improved YOLOv7 is proposed. Firstly, in the feature fusion network of YOLOv7, the detection ability of the algorithm to detect small and medium-sized targets in defect images is enhanced by adding a 160*160 small target detection head.
View Article and Find Full Text PDFNanotechnology
December 2024
College of Physics and Energy, Qinghai Nationalities University, Xining 810007, People's Republic of China.
Two-dimensional MC-MXenes, characterized by their lightweight nature, tunable surface structures, and strong affinity for hydrogen, hold significant promise for addressing various challenges in hydrogen energy utilization. This study focuses on investigating the hydrogen adsorption and desorption properties, as well as the stability of hydrogenated compounds in 19 pure MC-MXenes nanosheets. The results indicate that hydrogen adsorption on MC primarily occurs through weak physisorption, with MnC and FeC from the fourth period, and AgC and CdC from the fifth period exhibiting the lowest adsorption energies.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
State Key Laboratory of Multiphase Flow in Power Engineering & International Research Center for Renewable Energy, Xi'an Jiaotong University, Xi'an 710049, China.
Photothermal catalytic hydrogen production driven by the full spectrum of outdoor solar radiation, represents a highly promising and efficient approach for hydrogen generation. This method is widely anticipated by researchers due to its potential to enhance photon utilization efficiency at the reaction source. However, limited attention has been devoted to the variations in photothermal conversion performance of particle reaction suspensions caused by objective fluctuations of solar irradiation, especially when the morphology of the nanostructure changes, which is a crucial factor for practical applications in hydrogen production.
View Article and Find Full Text PDFNano Lett
December 2024
Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Northwestern Polytechnical University, Xi'an 710072, China.
Tin (Sn)-based perovskite solar cells (TPSCs) have garnered significant attention recently, with power conversion efficiencies (PCEs) approaching 16%. Nevertheless, for Sn-based perovskites, their rapid crystallization and easy Sn oxidation are always annoying for fabricating efficient and stable TPSCs. Coordination engineering has been developed for retarding the crystallization rate and Sn passivation, but the homogeneous crystallization of Sn-based perovskites is still challenging due to the asymmetric and polar nature of currently used ligands.
View Article and Find Full Text PDFPLoS One
December 2024
School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Small-world effect plays an important role in the field of network science, and optimizing the small-world property has been a focus, which has many applications in computational social science. In the present study, we model the problem of optimizing small-world property as a multiobjective optimization, where the average clustering coefficient and average path length are optimized separately and simultaneously. A novel method for optimizing small-world property is then proposed based on the multiobjective evolutionary algorithm with decomposition.
View Article and Find Full Text PDFACS Omega
November 2024
Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100086, China.
In order to explore the microscopic storage mechanism of shale gas in water-bearing pores and its influencing factors, this article first establishes a molecular dynamics model for methane in different types of adsorbents using molecular dynamics simulation and the grand canonical ensemble Monte Carlo methods. These adsorbents include graphene, organic matter (kerogen), brittle minerals (quartz and albite), carbonate minerals (calcite), and clay minerals (illite, kaolinite, and montmorillonite). Then, by analyzing the molecular storage model and density distribution curves of methane in pores, the storage mechanisms of shale gas are analyzed and elucidated.
View Article and Find Full Text PDF