5 results match your criteria: "Shenzhen Institute of Terahertz Technology and Innovation[Affiliation]"

Hyperspectral Metachip-Based 3D Spatial Map for Cancer Cell Screening and Quantification.

Adv Mater

December 2024

Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.

In this paper, compact terahertz (THz) metachips for hyperspectral screening and quantitative evaluation of human cancer cells is reported. This pixelated resonant metachips feature the resonance channel from 1 and 3 THz frequency with a record-high quality factor (up to 230). Through the interactions of various cancer cells of different concentrations, high-dimensional spectral signatures are obtained, which are further transformed into a spatial map for labelling and quantification purposes.

View Article and Find Full Text PDF

The geographical indication of pericarpium citri reticulatae (PCR) is very important in grading the quality and price of PCRs. Therefore, terahertz time-domain spectroscopy (THz-TDS) technology combined with convolutional neural networks (CNN) was proposed to distinguish PCRs of different origins without damage in this study. The one-dimensional CNN (1D-CNN) model with an accuracy of 82.

View Article and Find Full Text PDF

Discrimination of Pericarpium Citri Reticulatae in different years using Terahertz Time-Domain spectroscopy combined with convolutional neural network.

Spectrochim Acta A Mol Biomol Spectrosc

February 2023

School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China; Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics (e) Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; Food Refrigeration and Computerized Food Technology, University College Dublin, National University of Ireland, Agriculture and Food Science Centre, Belfield, Dublin 4, Ireland. Electronic address:

Pericarpium Citri Reticulatae (PCR) in longer storage years possess higher medicinal values, but their differentiation is difficult due to similar morphological characteristics. Therefore, this study investigated the feasibility of using terahertz time-domain spectroscopy (THz-TDS) combined with a convolutional neural network (CNN) to identify PCR samples stored from 1 to 20 years. The absorption coefficient and refractive index spectra in the range of 0.

View Article and Find Full Text PDF

Traditional methods for the determination of starch aging indicators often have a series of shortcomings such as time-consuming, high cost, large human error, damage to samples, environmental pollution, and high requirements for inspectors. Therefore, it is meaningful to find or establish a dynamic fingerprint identification pattern that can detect the aging degree of starch during the process of processing or storage quickly and accurately. It not only provides guidance for starch food processing but also saves a lot of human, material resources, and time.

View Article and Find Full Text PDF

Terahertz spectroscopy was used to qualitatively and quantitatively analyze four samples (three brands) of trehalose produced in China and other countries. The results show that the main characteristic peak was greatly affected by concentration, and the optimal detection concentration of trehalose was determined to be 25%-55% by transmission scanning. There were six significant characteristic absorption peaks in the trehalose spectrum, meaning that terahertz spectroscopy can be used for qualitative analysis, analogous to infrared spectroscopy.

View Article and Find Full Text PDF