1,315 results match your criteria: "Shanghai University of Engineering Science[Affiliation]"

The global challenge of wastewater contamination, especially from persistent pollutants like radioactive isotopes and heavy metals, demands innovative purification solutions. Radioactive iodine isotopes (I and I), stemming from nuclear activities, pose serious health risks due to their mobility, bioaccumulation, and ionizing radiation, particularly impacting thyroid health. Similarly, hexavalent chromium, Cr(VI), is highly toxic and persistent in water, linked to cancer and other severe health issues.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) is a common neurological disorder. Based on clinical characteristics, it can be categorized into normal cognition (NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia (AD). Once the condition begins to progress, the process is usually irreversible.

View Article and Find Full Text PDF

Binding of to dystrophin impairs the membrane trafficking of Nav1.5 protein and increases ventricular arrhythmia susceptibility.

Elife

January 2025

Department of Pharmacology (The Key Laboratory of Cardiovascular Research, Ministry of Education) at College of Pharmacy, Harbin Medical University, Harbin, China.

Dystrophin is a critical interacting protein of Nav1.5 that determines its membrane anchoring in cardiomyocytes. Long noncoding RNAs (lncRNAs) are involved in the regulation of cardiac ion channels, while their influence on sodium channels remains unexplored.

View Article and Find Full Text PDF

Neuromuscular abnormality is the leading cause of disability in adults. Understanding the complex interplay between muscle structure and function is crucial for effective treatment and rehabilitation. However, the substantial deformation of muscles during movement (up to 40%) poses challenges for accurate assessment.

View Article and Find Full Text PDF

A Dual-Branch Residual Network with Attention Mechanisms for Enhanced Classification of Vaginal Lesions in Colposcopic Images.

Bioengineering (Basel)

November 2024

Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.

Vaginal intraepithelial neoplasia (VAIN), linked to HPV infection, is a condition that is often overlooked during colposcopy, especially in the vaginal vault area, as clinicians tend to focus more on cervical lesions. This oversight can lead to missed or delayed diagnosis and treatment for patients with VAIN. Timely and accurate classification of VAIN plays a crucial role in the evaluation of vaginal lesions and the formulation of effective diagnostic approaches.

View Article and Find Full Text PDF

Recent Advances in Next-Generation Textiles.

Adv Mater

January 2025

Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China.

Textiles have played a pivotal role in human development, evolving from basic fibers into sophisticated, multifunctional materials. Advances in material science, nanotechnology, and electronics have propelled next-generation textiles beyond traditional functionalities, unlocking innovative possibilities for diverse applications. Thermal management textiles incorporate ultralight, ultrathin insulating layers and adaptive cooling technologies, optimizing temperature regulation in dynamic and extreme environments.

View Article and Find Full Text PDF

Ultrasonic detection of wrinkles in composites with gradual phase shift migration.

Ultrasonics

December 2024

School of Mechatronic & Automation Engineering, Shanghai University, Shanghai 200444, China; Key Laboratory of Silicate Cultural Relics Conservation (Shanghai University), Ministry of Education, China. Electronic address:

Fiber reinforced polymer composites (FRPs) are essential for various industrial fields, but wrinkles inside will greatly reduce their mechanical properties. Full-matrix capture (FMC) is a popular data structure for ultrasonic phased array imaging in composites. However, such structure may lead to data redundancy and noise interference.

View Article and Find Full Text PDF

The strain-release-driven reactions of bicyclo[1.1.0]butanes (BCBs) have received significant attention from chemists.

View Article and Find Full Text PDF

Research on Omnidirectional Gait Switching and Attitude Control in Hexapod Robots.

Biomimetics (Basel)

November 2024

School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.

To tackle the challenges of poor stability during real-time random gait switching and precise trajectory control for hexapod robots under limited stride and steering conditions, a novel real-time replanning gait switching control strategy based on an omnidirectional gait and fuzzy inference is proposed, along with an attitude control method based on the single-neuron adaptive proportional-integral-derivative (PID). To start, a kinematic model of a hexapod robot was developed through the Denavit-Hartenberg (D-H) kinematics analysis, linking joint movement parameters to the end foot's endpoint pose, which formed the foundation for designing various gaits, including omnidirectional and compound gaits. Incorporating an omnidirectional gait could effectively resolve the challenge of precise trajectory control for the hexapod robot under limited stride and steering conditions.

View Article and Find Full Text PDF

[Carbon Emission Analysis and Carbon Reduction Strategy of Small and Medium-scale Municipal Wastewater Treatment Plants in Cities and Towns].

Huan Jing Ke Xue

January 2025

Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

The carbon emissions of three typical processes (AAO, MSBR, and oxidation ditch) were systematically analyzed from the perspective of the whole wastewater treatment process based on the annual data of eleven urban small and medium-scale WWTPs in the year 2022, and the effects of different influent characteristics (TP, TN, BOD, COD, influent volume, and COD/TN) on the carbon emissions were studied by using the partial least squares structural equation modeling (PLS-SEM) method. The results showed that indirect carbon emissions dominated the total carbon emissions of small and medium-scale WWTPs (69.5%), and carbon emissions from electricity consumption were the largest source (43.

View Article and Find Full Text PDF

Soft actuators are limited by single-mode driving technology, which poses challenges in dealing with complex and multidimensional movements. In this study, a multiresponsive soft actuator was fabricated by integrating a microwrinkling structure into an MXene-based film, enabling programmable motions. To achieve this, we introduced -hexane into the film preparation process and utilized its rapid volatilization to accelerate the shrinkage difference between the film and the substrate.

View Article and Find Full Text PDF

Reprogramming of iPSCs to NPCEC-like cells by biomimetic scaffolds for zonular fiber reconstruction.

Bioact Mater

March 2025

Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.

Ectopia lentis (EL), characterised by impaired zonular fibers originating from non-pigmented ciliary epithelial cells (NPCEC), presents formidable surgical complexities and potential risks of visual impairment. Cataract surgery is the only treatment method for EL, but it leads to the loss of accommodative power of the lens post-operatively. Furthermore, the challenge of repairing zonular ligaments remains a significant global issue.

View Article and Find Full Text PDF

Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone.

View Article and Find Full Text PDF

Differentiating low-carbon waste management strategies for bio-based and biodegradable plastics under various energy decarbonization scenarios.

Waste Manag

December 2024

Innovation Centre for Environment and Resources, Shanghai University of Engineering Science, No.333 Longteng Road, Songjiang District, Shanghai 201620, China. Electronic address:

Bio-based and biodegradable (bio-)plastics are heralded as a key solution to mitigate plastic pollution and reduce CO emissions. Yet, their end-of-life treatments embodies complex energy and material interactions, potentially leading to emissions through incineration or recycling. This study investigates the cradle-to-grave, emphasizing the waste management stage, carbon footprint for several types of bio-plastics, leveraging both GWP100a and CO uptake methods to explore the carbon reduction benefits of recycling over disposal.

View Article and Find Full Text PDF

Association of metalloestrogens exposure with depression in women across reproductive lifespan.

Front Psychiatry

December 2024

Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China.

Background: Exposure to metal could impact women's depression risk. However, the connection and mechanisms between metalloestrogens exposure and depression are still not fully understood. We aim to explore the associations between metalloestrogens and the risk of depression in women across reproductive lifespan.

View Article and Find Full Text PDF

Achieving Robust α-Alumina Nanofibers by Ligand Confinement Coupled with Local Disorder Tuning.

ACS Nano

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.

Article Synopsis
  • Oxide ceramic fibers are crucial for high-performance applications but face integrity issues under extreme conditions due to grain growth and structural changes.
  • The study introduces a method using carboxylic acids to control colloid growth for creating sturdy α-alumina nanofibers that resist these failures.
  • The resultant nanofibers demonstrate excellent mechanical properties and flexibility, successfully enduring extreme temperatures and repeated bending without fractures.
View Article and Find Full Text PDF

Ti6Al4V/Inconel 718 composites were prepared using arc additive manufacturing technology at different deposition currents. The properties of the composites directly influence the performance of the gradient materials, while heat input further affects the composites' properties. The results indicate that at a deposition current of 35 A, Ti elements diffuse into the Inconel 718 alloy.

View Article and Find Full Text PDF

The fracture position of a friction plug welding (FPW) joint is typically located at or near the thermo-mechanically affected zone (TMAZ). Here, we found that microcracks in all FPW specimens initiate at the deformed plug center (DPC) zone and then propagate through the plug center along 45° shear surfaces, because the lowest hardness occurs at the DPC zone rather than the TMAZ or other zones, and the DPC zone presents a tilt fiber-like microstructure. Such a tilt microstructure stimulates formations and deformations of microvoids and propagation of microcracks along 45° shear surfaces.

View Article and Find Full Text PDF

Research on the Structure and Properties of Traditional Handmade Bamboo Paper During the Aging Process.

Molecules

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.

Handmade papers, as carriers of paper-based cultural relics, have played a crucial role in the development of human culture, knowledge, and civilization. Understanding the intricate relationship between the structural properties and degradation mechanisms of handmade papers is essential for the conservation of historical documents. In this work, an artificial dry-heat-accelerated aging method was used to investigate the interplay among the mechanical properties of paper, the degree of polymerization (DP) of cellulose, the chemical composition, the hydrogen bond strength, the crystallinity, and the degree of hornification for paper fibers.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have demonstrated remarkable efficacy across various cancer types. However, immune-related adverse events (irAEs) pose a significant challenge in immunotherapy, particularly the associated pneumonia as the primary adverse reaction, which can lead to irreversible pulmonary fibrosis. Additionally, monotherapy with programmed death ligand (PD-L1) inhibitors has shown limited effectiveness.

View Article and Find Full Text PDF

Bio-K-Transformer: A pre-trained transformer-based sequence-to-sequence model for adverse drug reactions prediction.

Comput Methods Programs Biomed

December 2024

INF Technology (Shanghai) Co., Ltd., Shanghai, China. Electronic address:

Background And Objective: Adverse drug reactions (ADRs) pose a serious threat to patient health, potentially resulting in severe consequences, including mortality. Accurate prediction of ADRs before drug market release is crucial for early prevention. Traditional ADR detection, relying on clinical trials and voluntary reporting, has inherent limitations.

View Article and Find Full Text PDF
Article Synopsis
  • - TROP-2, a protein linked to various types of cancer, is a potential target for new cancer treatments, specifically antibody-drug conjugates (ADCs), but their effectiveness against solid tumors is limited due to issues like poor penetration.
  • - Researchers developed a small, stable immunotoxin using a shark-derived antibody known as VNAR, which has better tissue penetration properties than traditional antibodies.
  • - The study identified a specific VNAR, called VNAR-5G8, which binds effectively to TROP-2 and created a recombinant immunotoxin (5G8-PE38) that showed strong anti-tumor activity, suggesting its potential as a cancer therapy option.
View Article and Find Full Text PDF

Spectroscopic characterization of buffer-gas-cooled lead monofluoride molecules in the BΣ(υ' = 0) ← XΠ(υ = 0) transition.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, PR China; Xinjiang Astronomical Observatory, Chinese Academy of Sciences, 150 Science 1 - Street, Urumqi, Xinjiang 830011, PR China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, PR China. Electronic address:

Establishing a nonzero measurement of the electron Electric Dipole Moment (eEDM) has long been a fundamental pursuit in atomic, molecular and optical physics, offering possible insights into new physics beyond the Standard Model. In this regard, lead monofluoride (PbF) has emerged as a potential candidate for measuring eEDM primarily due to its suitable properties such as the strong internal effective electric field, and eEDM-sensitive ground state with large Ω-doubling and small magnetic g factor. In the present work, we realized the production of a buffer-gas-cooled PbF molecular beam and characterized its high-resolution spectroscopy in the BΣ(υ'=0) ← XΠ(υ = 0) transition, including both direct absorption and laser-induced fluorescence spectroscopy.

View Article and Find Full Text PDF

Background: Deepening medical insurance reform is pivotal in promoting fairness, inclusiveness, and sustainability within the system, particularly by enhancing coordination levels and strengthening the interconnection between medical insurance, healthcare, and pharmaceuticals. In China, 71.09 million migrant children, who make up 23.

View Article and Find Full Text PDF

Piezoelectric micro-robots have gained considerable attention in rescue and medical applications due to their rapid response times and high positioning accuracy. In this paper, inspired by the human butterfly locomotion pattern, we propose a novel resonant four-legged piezoelectric micro-robot designed to achieve fast and efficient movement in complex and confined spaces. The robot utilizes the parallel piezoelectric bimorph as the driving unit, and its leg structure mimics the butterfly motion.

View Article and Find Full Text PDF