56 results match your criteria: "Shanghai Jiao Tong University Shanghai 200240 P. R. China.[Affiliation]"

Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials.

RSC Adv

April 2021

Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China

In this study, two kinds of cobalt phthalocyanine (CoPc) derivatives containing hexafluoroisopropanol (HFIP) and hexafluorbisphenol A (6FBPA) substituents have been obtained. Graphene quantum dots (GQDs) were anchored to CoPc derivatives by π-π bonding, forming hybrid materials. They were employed to detect dimethyl methylphosphonate (DMMP) gas, an ideal simulant gas for sarin nerve gas, and achieved good gas response performance at room temperature.

View Article and Find Full Text PDF

DNA 5-hydroxymethyluracil (5hmU) is a thymine modification existing in the genomes of various organisms. The post-replicative formation of 5hmU occurs hydroxylation of thymine by ten-eleven translocation (TET) dioxygenases in mammals and J-binding proteins (JBPs) in protozoans, respectively. In addition, 5hmU can also be generated through oxidation of thymine by reactive oxygen species or deamination of 5hmC by cytidine deaminase.

View Article and Find Full Text PDF

A versatile silylation of heteroaryl C-H bonds is accomplished under the catalysis of a well-defined spirocyclic NHC Ir(iii) complex (SNIr), generating a variety of heteroarylsilanes. A significant advantage of this catalytic system is that multiple types of intermolecular C-H silylation can be achieved using one catalytic system at α, β, γ, or δ positions of heteroatoms with excellent regioselectivities. Mechanistic experiments and DFT calculations indicate that the polycyclic ligand of SNIr can form an isolable cyclometalated intermediate, which leaves a phenyl dentate free and provides a hemi-open space for activating substrates.

View Article and Find Full Text PDF

Allergic diseases are pathological immune responses with significant morbidity, which are closely associated with allergic mediators as released by allergen-stimulated mast cells (MCs). Prophylactic stabilization of MCs is regarded as a practical approach to prevent allergic diseases. However, most of the existing small molecular MC stabilizers exhibit a narrow therapeutic time window, failing to provide long-term prevention of allergic diseases.

View Article and Find Full Text PDF

Large plasmonic color metasurfaces fabricated by super resolution deep UV lithography.

Nanoscale Adv

April 2021

DTU Nanolab, National Centre for Nano Fabrication and Characterization, Technical University of Denmark Ørsted Plads, Building 347 DK-2800 Kgs. Lyngby Denmark +45 45258101.

In this paper, we demonstrate plasmonic color metasurfaces as large as ∼60 cm fabricated by deep UV projection lithography employing an innovative combination of resolution enhancement techniques. Briefly, in addition to the established off-axis dipole illumination, double- and cross-exposure resolution enhancement of lithography, we introduce a novel element, the inclusion of transparent assist features to the mask layout. With this approach, we demonstrate the fabrication of relief arrays having critical dimensions such as 159 nm nanopillars or 210 nm nanoholes with 300 nm pitches, which is near the theoretical resolution limit expressed by the Rayleigh criterion for the 248 nm lithography tool used in this work.

View Article and Find Full Text PDF

Enhancing room-temperature NO gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material.

RSC Adv

January 2021

Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University Shanghai 200240 P. R. China

Metal phthalocyanine (MPc) has a great saturation response value, but its low conductivity and slow response speed limit its practical application. A novel hybrid material composed of graphene quantum dots (GQDs) and metal phthalocyanine derivatives has been obtained. GQDs can be anchored onto the surface of MPc nanofibers through π-π stacking.

View Article and Find Full Text PDF

Magnesium batteries have been considered promising candidates for next-generation energy storage systems owing to their high energy density, good safety without dendrite formation, and low cost of magnesium resources. However, high-performance cathodes with stable capacity, good conductivity, and fast ions transport are needed, since many conventional cathodes possess a low performance and poor preparation controllability. Herein, a liquid-driven coaxial flow focusing (LDCFF) approach for preparing a novel microcapsule system with controllable size, high loading, and stable magnesium-storage performance is presented.

View Article and Find Full Text PDF

Cesium lead halide perovskite nanocrystals (NCs) have attracted extensive attention for photoelectric device application due to their excellent optoelectronic properties. However, the toxicity of lead has hindered their commercialization. Consequently, lead free cesium metal halide NCs have been developed, but these materials suffer from low photoluminescence quantum yield (PLQY) and poor stability.

View Article and Find Full Text PDF

Tuberculosis is still one of the top 10 causes of death worldwide, particularly with the emergence of multidrug-resistant tuberculosis. As the most effective first-line anti-tuberculosis drug, pyrazinamide also develops resistance due to the mutation in the pncA gene. Among these mutations, seven mutations at positions F94L, F94S, K96N, K96R, G97C, G97D, and G97S are classified as high-level resistance mutations.

View Article and Find Full Text PDF

Reversible pattern systems, namely pattern memory surfaces, possessing tunable morphology play an important role in the development of smart materials; however, the construction of these surfaces is still extensively challenging because of complicated methodologies or chemical reactions. Herein, a functionalized basement is strategically integrated with a multi-responsive supramolecular network based on hydrogen bonding between aggregation-induced emission luminogens (AIEgens) and copolymers containing amidogen (poly(St--Dm) to establish a bilayer system for near-infrared (NIR)-driven memory dual-pattern, where both the fluorescence emission and wrinkled structures can be concurrently regulated by a noninvasive NIR input. The motion of the AIEgens and photo-to-thermal expansion of the modified base allow temporal erasing of the fluorescent wrinkling patterns.

View Article and Find Full Text PDF

Morphological stability is crucially important for the long-term stability of polymer solar cells (PSCs). Many high-efficiency PSCs suffer from metastable morphology, resulting in severe device degradation. Here, a series of copolymers is developed by manipulating the content of chlorinated benzodithiophene-4,8-dione (T1-Cl) via a random copolymerization approach.

View Article and Find Full Text PDF

Graphene quantum dots in photodynamic therapy.

Nanoscale Adv

October 2020

State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237 P. R. China

Graphene quantum dots (GQDs) have shown great promise in a variety of medical applications. Recently, it has been found that GQDs are also beneficial for photodynamic therapy (PDT). However, the findings of GQDs as PDT agents have been controversial in the literature.

View Article and Find Full Text PDF

Molecular doping is often used in organic semiconductors to tune their (opto)electronic properties. Despite its versatility, however, its application in organic photovoltaics (OPVs) remains limited and restricted to p-type dopants. In an effort to control the charge transport within the bulk-heterojunction (BHJ) of OPVs, the n-type dopant benzyl viologen (BV) is incorporated in a BHJ composed of the donor polymer PM6 and the small-molecule acceptor IT-4F.

View Article and Find Full Text PDF

Efficient combination of two or more reactions into a practically useful purification free sequence is of great significance for the achievement of structural complexity and diversity, and an important approach for the development of new synthetic strategies that are industrially step-economic and environmentally friendly. In this work, a facile and efficient method for the construction of highly functionalized spirocyclo[4.5]decane derivatives containing a synthetically challenging quaternary carbon center has been successfully developed through the realization of a tandem Castro-Stephens coupling/1,3-acyloxy shift/cyclization/semipinacol rearrangement sequence.

View Article and Find Full Text PDF

Meiosis increases genetic diversity, yet the genome complement needs to be stable to ensure offspring viability. Both small ubiquitin-like modifier (SUMO) and ubiquitin have been reported to participate in meiotic regulation, yet functions of the SUMO-ubiquitination crosstalk in meiosis remain unclear. Here, it is reported that a SUMO-targeted ubiquitin ligase, Slx8p, promotes accurate chromosome segregation during meiosis, since the deletion of leads to increased aneuploidy due to a defect in synaptonemal complex (SC) component degradation.

View Article and Find Full Text PDF

Multiplex detection of miRNAs based on aggregation-induced emission luminogen encoded microspheres.

RSC Adv

December 2019

Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent Instrument for Diagnosis and Therapy, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China

Herein, we report a multiplex detection platform based on a suspension array with aggregation-induced emission luminogen (AIEgen) barcodes for simultaneous quantitative measurement of let-7b-5p, miR-16-5p and miR-19b-3p, which are associated with gastric cancer. A detection strategy by using a flow cytometer is proposed, which utilizes AIEgen-encoded microspheres to quantify the target miRNAs, and phycoerythrin as a fluorescence reporter on the detection probes to provide quantitative signals. This multiplex assay shows good specificity for recognizing single base mismatch, and possesses excellent sensitivity with limits of detection (LODs) ranging from 0.

View Article and Find Full Text PDF

Organic fluorescent dyes with excellent self-delivery to living cells are always difficult to find due to the limitation of the plasma membrane having rigorous selectivity. Herein, in order to improve the permeability of dyes, we utilize a side-chain engineering strategy (SCES): adjusting the side-chain length of dyes to fine-tune the adsorption and desorption processes on the membrane-aqueous phase interfaces of the outer and inner leaflets of the plasma membrane. For this, a family of fluorescent derivatives () was prepared by functionalizing a styryl-pyridinium fluorophore with alkyl side-chains containing a different carbon number from 1 to 22.

View Article and Find Full Text PDF

Nitrogen and sulfur co-doped graphene-like carbon (N,S-GLC) is successfully prepared in a one-step hydrothermal reaction of glucose with industrial dye wastewater followed by chemical activation. The nitrogen and sulfur are sourced entirely from the industrial wastewater. The process not only provides an alternative way of treating industry wastewater, but also offers a green route for recovering energy from the waste in the form of chemicals.

View Article and Find Full Text PDF

The use of lithium-ion batteries (LIBs) is skyrocketing since they are widely applied in portable consumer devices and electric vehicles. However, at the end of their lifetime, large amount of spent LIBs will result in a negative environmental impact and aggravate the problem of resource shortage without proper disposal. Therefore, recycling is an effective solution, which will be enforced in the near future.

View Article and Find Full Text PDF

Graphene quantum dots (GQDs) prepared through photo-Fenton reaction of graphene oxide are separated gel column chromatography. The as-separated GQDs were selectively introduced into the active layer of organic solar cells and achieved an enhancement of power conversion efficiency (PCE).

View Article and Find Full Text PDF

2D layered materials with atomic thickness have attracted extensive research interest due to their unique physicochemical and electronic properties, which are usually very different from those of their bulk counterparts. Heterojunctions or heterostructures based on ultrathin 2D materials have attracted increasing attention due to the integrated merits of 2D ultrathin components and the heterojunction effect on the separation and transfer of charges, resulting in important potential values for catalytic applications. Furthermore, 2D/2D heterostructures with face-to-face contact are believed to be a preferable dimensionality design due to their large interface area, which would contribute to enhanced heterojunction effect.

View Article and Find Full Text PDF

Heterojunction photocatalysts at present are still suffering from the low charge separation/transfer efficiency due to the poor charge mobility of semiconductor-based photocatalysts. Atomic-scale heterojunction-type photocatalysts are regarded as a promising and effective strategy to overcome the drawbacks of traditional photocatalysts for higher photoenergy conversion efficiencies. Herein, an atomic-scale heterojunction composed of a boron nitride monolayer and graphene (h-BN-C/G) is constructed to significantly shorten the charge transfer path to promote the activation of molecular oxygen for artificial photosynthesis (exemplified with oxidative coupling of amines to imines).

View Article and Find Full Text PDF

Six new guaiane dimers, xyloplains A-F (1-6), with connecting patterns through two direct C-C bonds (C-1 to C-3', C-2 to C-1'), were isolated from the roots of . Their structures were elucidated clearly using extensive analysis of 1D NMR and 2D NMR, combined with Cu-Kα X-ray diffraction and circular dichroism (CD) experiments. In additon, all of the isolates were tested for anti-inflammatory activity by measuring the amount of nitric oxide produced.

View Article and Find Full Text PDF

In this work, MgNi(Fe)H was synthesized using precursors of nano Ni(Fe) composite powder prepared through arc plasma method and coarse-grained Mg powder. The microstructure, composition, phase components and the hydrogen storage properties of the Mg-Ni(Fe) composite were carefully investigated. It is observed that the MgNi(Fe)H particles formed from the Mg-Ni(Fe) composite have a diameter of 100-240 nm and a portion of Fe in the Ni(Fe) nano particles transformed into α-Fe nano particles with the diameter of 40-120 nm.

View Article and Find Full Text PDF