147 results match your criteria: "Shanghai Institute of Traumatology and Orthopedics.[Affiliation]"
Small
February 2025
Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, P. R. China.
Efferocytosis in macrophages typically engages an anti-inflammatory positive feedback regulatory mechanism. In osteoarthritis (OA), characterized by imbalanced inflammatory homeostasis, the proinflammatory state of macrophages in the immune microenvironment can be reversed through enhanced efferocytosis. This study develops an in situ proefferocytosis hydrogel microsphere (macrophage polarity converter, H-C@IL) for OA treatment.
View Article and Find Full Text PDFAdv Mater
February 2025
Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, 200032, China.
While tumor organoids have revolutionized cancer research by recapitulating the cellular architecture and behaviors of real tumors in vitro, their lack of functional vasculature hinders their attainment of full physiological capabilities. Current efforts to vascularize organoids are struggling to achieve well-defined vascular networks, mimicking the intricate hierarchy observed in vivo, which restricts the physiological relevance particularly for studying tumor progression and response to therapies targeting the tumor vasculature. An innovative vascularized patient-derived tumor organoids (PDTOs)-on-a-chip with hierarchical, tumor-specific microvasculature is presented, providing a versatile platform to explore tumor-vascular dynamics and antivascular drug efficacy.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
Bone defect healing is a multi-factorial process involving the inflammatory microenvironment, bone regeneration and the formation of blood vessels, and remains a great challenge in clinical practice. Combined use of three-dimensional (3D)-printed scaffolds and bioactive factors is an emerging strategy for the treatment of bone defects. Scaffolds can be printed using 3D cryogenic printing technology to create a microarchitecture similar to trabecular bone.
View Article and Find Full Text PDFAdv Mater
February 2025
Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
Electrical stimulation enhances cellular activity, promoting tissue regeneration and repair. However, specific cells and maintaining a stable energy supply are challenges for precise cell electrical stimulation therapy. Here, force-electric conversion hydrogel microspheres (Piezo@CR MPs) is devloped to induce specific stem cell aggregation and promote chondrogenic differentiation through localized electrical stimulation.
View Article and Find Full Text PDFBasic Clin Pharmacol Toxicol
December 2024
Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
Adv Sci (Weinh)
November 2024
Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
Age-related declines in self-renewal and multipotency of bone marrow mesenchymal stem cells (BMSCs) limit their applications in tissue engineering and clinical therapy. Thus, understanding the mechanisms behind BMSC senescence is crucial for maintaining the rejuvenation and multipotent differentiation capabilities of BMSCs. This study reveals that impaired USP26 expression in BMSCs leads to mitochondrial dysfunction, ultimately resulting in aging and age-related declines in the self-renewal and multipotency of BMSCs.
View Article and Find Full Text PDFFree Radic Biol Med
November 2024
Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China. Electronic address:
The pathogenesis of intervertebral disc degeneration (IVDD) involves complex signaling networks and various effector molecules, and our understanding of the pathogenesis of IVDD is limited. Hypoxia inducible factor-1α (HIF-1α) is closely related to IVDD, and there is excessive oxidative stress concurrent with IVDD. In this study, we found that HIF-1α could protect nucleus pulposus cells from excessive oxidative stress by reversing the imbalance between oxidants and antioxidants and thus mitigating the oxidative stress-induced mitochondrial impairment.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Orthopedic Laboratory of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, PR China; Department of Orthopedics, Laboratory of Biological Tissue Engineering and Digital Medicine, Affiliated Hospital of North Sichuan Medical College, No. 1 The South of Maoyuan Road, Nanchong, Sichuan, 637000, PR China. Electronic address:
The treatment of osteoporotic bone defects poses a challenge due to the degradation of the skeletal vascular system and the disruption of local bone metabolism within the osteoporotic microenvironment. However, it is feasible to modulate the disrupted local bone metabolism imbalance through enhanced vascularization, a theory termed "vascularization-bone metabolic balance". This study developed a 3D-printed polycaprolactone (PCL) scaffold modified with EPLQLKM and SVVYGLR peptides (PCL-SE).
View Article and Find Full Text PDFExp Mol Med
July 2024
Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
The hypoxia-inducible factor-1α (HIF-1α) pathway coordinates skeletal bone homeostasis and endocrine functions. Activation of the HIF-1α pathway increases glucose uptake by osteoblasts, which reduces blood glucose levels. However, it is unclear whether activating the HIF-1α pathway in osteoblasts can help normalize glucose metabolism under diabetic conditions through its endocrine function.
View Article and Find Full Text PDFFront Immunol
June 2024
Department of Endocrinology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.
Osteoporosis represents a systemic imbalance in bone metabolism, augmenting the susceptibility to fractures among patients and emerging as a notable mortality determinant in the elderly population. It has evolved into a worldwide concern impacting the physical well-being of the elderly, imposing a substantial burden on both human society and the economy. Presently, the precise pathogenesis of osteoporosis remains inadequately characterized and necessitates further exploration.
View Article and Find Full Text PDFResearch (Wash D C)
April 2024
State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT.
View Article and Find Full Text PDFNat Biotechnol
June 2024
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Int J Biol Sci
March 2024
Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
Radiotherapy (RT) stands as the primary treatment for tumors, but it inevitably causes damage to normal cells. Consequently, radiation injury is a crucial consideration for radiation oncologists during therapy planning. Cell death including apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis play significant roles in tumor treatment.
View Article and Find Full Text PDFMed
February 2024
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai 200011, P.R. China. Electronic address:
Background: Adipose tissue-derived stem cell-derived apoptotic bodies (ADSC-ABs) have shown great potential for immunomodulation and regeneration, particularly in diabetic wound therapy. However, their local application has been limited by unclear regulatory mechanisms, rapid clearance, and short tissue retention times.
Methods: We analyzed the key role molecules and regulatory pathways of ADSC-ABs in regulating inflammatory macrophages by mRNA sequencing and microRNA (miRNA) sequencing and then verified them by gene knockdown.
Adv Sci (Weinh)
March 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, P. R. China.
The effective management of osteomyelitis remains extremely challenging due to the difficulty associated with treating bone defects, the high probability of recurrence, the requirement of secondary surgery or multiple surgeries, and the difficulty in eradicating infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Hence, smart biodegradable biomaterials that provide effective and precise local anti-infection effects and can promote the repair of bone defects are actively being developed. Here, a novel nano-micro composite is fabricated by combining calcium phosphate (CaP) nanosheets with drug-loaded GelMA microspheres via microfluidic technology.
View Article and Find Full Text PDFCurr Neurovasc Res
January 2024
Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Department of Orthopedics, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
Background: The AKT/mTOR/p70S6K pathway has been shown to potentially promote spinal cord injury (SCI) repair in rats. However, its exact mechanism and beyond needs to be further explored.
Objective: This study aims to explore the AKT/mTOR/p70S6K pathway in oligodendrocyte precursor cell (OPC) differentiation, microglial polarization differentiation, and the role of these in myelin regeneration in vitro.
J Nanobiotechnology
September 2023
Department of Spine Surgery Renji Hospital, Shanghai JiaoTong University School of Medicine, 160 Pujian Road, Shanghai, 200127, P. R. China.
The pathogenesis of intervertebral disc degeneration (IVDD) is attributed to metabolic dysregulation within the extracellular matrix and heightened apoptosis of nucleus pulposus cells (NPC). Therefore, a potential therapeutic strategy for managing IVDD involves the reestablishment of metabolic equilibrium within the extracellular matrix and the suppression of excessive myeloid cell apoptosis. The microRNA, miR-5590, displays marked differential expression in degenerative nucleus pulposus (NP) tissues and exerts a direct influence on the regulation of DDX5 expression.
View Article and Find Full Text PDFMicrosyst Nanoeng
August 2023
College of Engineering and Technology, Southwest University, 400716 Chongqing, China.
Uninterrupted, efficient power supplies have posed a significant hurdle to the ubiquitous adoption of wearable devices, despite their potential for revolutionizing human‒machine interactions. This challenge is further compounded by the requirement of these devices to supply dependable energy for data-intensive sensing and transmission. Traditional thermoelectric solutions fail to deliver satisfactory performance under conditions of extremely low voltages.
View Article and Find Full Text PDFFront Surg
August 2023
Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Nano Lett
July 2023
Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai 200032, China.
Cell migration occurs in confined microenvironments, which plays a vital role in the process of tumor metastasis. However, it is challenging to study their behaviors in vivo. Here we developed a cell squeeze system that can be scaled down to micrometers to mimic native physical confined microenvironments, wherein degrees of surface adhesion and mechanical constraints could be manipulated in order to investigate cell-migrating behaviors.
View Article and Find Full Text PDFNat Biotechnol
April 2024
Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
Base editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing.
View Article and Find Full Text PDFGlobal Spine J
November 2024
Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China.
Study Design: This was a retrospective cohort radiographic study.
Objective: To determine the age- and gender-related normative values and correlation of cervical sagittal parameters in asymptomatic Chinese adults, and to explore the changes and compensating mechanisms across different age groups.
Methods: The asymptomatic subjects were divided into 6 groups according to age and then one-way analysis of variance was used to compare the multiple sets of cervical sagittal parameters among the different age groups.
Bioact Mater
September 2023
Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs).
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2023
Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Whole body vibration (WBV) has been used to treat various musculoskeletal diseases in recent years. However, there is limited knowledge about its effects on the lumbar segments in upright posture mice. This study was performed to investigate the effects of axial Whole body vibration on the intervertebral disc (IVD) and facet joint (FJ) in a novel bipedal mouse model.
View Article and Find Full Text PDFSci Adv
February 2023
Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China.
Mechanical activation of fibroblasts, caused by friction and transforming growth factor-β1 recognition, is one of the main causes of tissue adhesions. In this study, we developed a lubricated gene-hydrogel patch, which provides both a motion lubrication microenvironment and gene therapy. The patch's outer layer is composed of polyethylene glycol polyester hydrogel.
View Article and Find Full Text PDF