493 results match your criteria: "Shanghai Institute of Traumatology and Orthopaedics[Affiliation]"
Research (Wash D C)
January 2025
Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P. R. China.
Hyperglycemia and bacterial colonization in diabetic wounds aberrantly activate Nod-like receptor protein 3 (NLRP3) in macrophages, resulting in extensive inflammatory infiltration and impaired wound healing. Targeted suppression of the NLRP3 inflammasome shows promise in reducing macrophage inflammatory disruptions. However, challenges such as drug off-target effects and degradation via lysosomal capture remain during treatment.
View Article and Find Full Text PDFBioact Mater
April 2025
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
Bioelectrical stimulation is a powerful technique used to promote tissue regeneration, but it can be hindered by an "electrical overload" phenomenon in the core region of stimulation. We develop a threaded microneedle electrode system that protects against "electrical overload" by delivering medicinal hydrogel microspheres into the core regions. The threaded needle body is coated with polydopamine and chitosan to enhance the adhesion of microspheres, which are loaded into the threaded grooves, allowing for their stereoscopic release in the core regions.
View Article and Find Full Text PDFRegen Biomater
November 2024
Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China.
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China. Electronic address:
Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved.
View Article and Find Full Text PDFPhospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations.
View Article and Find Full Text PDFActa Biomater
January 2025
Clinical Center for Sports Medicine, Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China. Electronic address:
Interface friction impedes tissue healing and stimulates interface cells to produce matrix metalloproteinases (MMPs); however, the precise mechanisms underlying matrix degradation, and the formation of fibrous scars remain unclear. This research involved the development of interface lubricating microspheres that inhibit the PI3K/AKT/mTOR signaling pathway in tenocytes. This inhibition significantly decreased MMP-13 expression and increased COL-1 production, thereby facilitating interface repair and regeneration.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.
View Article and Find Full Text PDFMol Med
December 2024
Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, 197 Ruijin er Road, Shanghai, 200025, China.
Background: Glaucoma is a group of heterogeneous neurodegenerative diseases with abnormal energy metabolism and imbalanced neuroinflammation in the retina. Thioredoxin-interacting protein (TXNIP) is involved in glucose and lipid metabolism, and associated with oxidative stress and inflammation, however, not known whether to be involved in glaucoma neuropathy and its underlying mechanisms.
Methods: To establish the chronic ocular hypertension (COH) mice model.
Biomater Transl
September 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Biomicrofluidics
December 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Bio-microfluidic technologies offer promising applications in diagnostics and therapy, yet they face significant technical challenges, particularly in the need for external power sources, which limits their practicality and user-friendliness. Recent advancements have explored innovative methods utilizing body fluids, motion, and heat to power these devices, addressing the power supply issue effectively. Among these, body-motion and body-heat-powered systems stand out for their potential to create self-sustaining, wearable, and implantable devices.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China. Electronic address:
ROS-induced therapy can eradicate breast tumors when combined with thermal ablation, but excessive ROS also threatens peritumoral tissue with inflammation. To eradicate tumors and avoid inflammatory sequela, it is necessary to generate ROS in treatment stage and scavenge ROS in prognostic stage. However, it is a great challenge to reverse ROS in different stages.
View Article and Find Full Text PDFResearch (Wash D C)
October 2024
Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China.
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, 9713 AV Groningen, the Netherlands; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland. Electronic address:
Anti-glycolysis is well-recognized for inhibition of tumor proliferation. However, tumor metabolic heterogeneity confers great challenges in the therapeutic efficacy of glycolysis inhibitors. Here, a metabolic trapping strategy was employed to avoid metabolism heterogeneity in tumors.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Harnessing the robust electromechanical couplings, piezoelectric materials not only enable efficient bio-energy harvesting, physiological sensing and actuating but also open enormous opportunities for therapeutic treatments through surface polarization directly interacting with electroactive cells, tissues, and organs. Known for its highly oriented and hierarchical structure, collagen in natural bones produces local electrical signals to stimulate osteoblasts and promote bone formation, inspiring the application of piezoelectric materials in orthopedic medicine. Recent studies showed that piezoelectricity can impact microenvironments by regulating molecular sensors including ion channels, cytoskeletal elements, cell adhesion proteins, and other signaling pathways.
View Article and Find Full Text PDFSmall
December 2024
Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, P. R. China.
J Nanobiotechnology
November 2024
Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, P. R. China.
Adv Sci (Weinh)
January 2025
Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopaedic Institute of Soochow University, 899 Pinghai Road, Suzhou, Jiangsu, 215031, P. R. China.
Hypoxia and reactive oxygen species (ROS) overaccumulation cause persistent oxidative stress and impair intrinsic regenerative potential upon tissue injury. For local tissue injury with hypoxia, such as bone fracture and defects, a localized-sufficient oxygen supply is highly desirable but remains challenging. Therefore, to explore a strategy and its intrinsic mechanism for supplying oxygen locally and remodeling the regenerative microenvironment, an innovative oxygenating hydrogel microsphere system with sustained oxygenation and antioxidant properties is introduced by loading CaO@SiO@PDA (CSP) nanoparticles.
View Article and Find Full Text PDFBioact Mater
February 2025
Department of Orthopaedics and School of Biomedical Engineering, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 197 Ruijin 2nd Road, Shanghai, 200025, China.
Carbohydr Polym
January 2025
School of Health Sciences, Saint Francis University, Hong Kong 999077, China. Electronic address:
Wound dressing is commonly used for skin injuries. The design of wound dressing typically stems from the principles of open-wound management such as infection prevention, moisture balance and healing response. A new wound dressing comprising polyvinylpyrrolidone (PVP)-berberine hydrochloride (BHC)/PVP-cellulose acetate (CA)-BHC/CA-aloin tri-layer Janus fiber was successfully fabricated using trifluid side-by-side electrospinning for antibacterial and wound healing functions.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Shanghai, 200032, P. R. China.
Despite great progress in enhancing tumor immunogenicity, conventional gas therapy cannot effectively reverse the tumor immunosuppressive microenvironment (TIME), limiting immunotherapy. The development of therapeutic gases that are tumor microenvironment responsive and efficiently reverse the TIME for precisely targeted tumor gas-immunometabolic therapy remains a great challenge. In this study, a novel cancer cell membrane-encapsulated pH-responsive nitric oxide (NO)-releasing biomimetic nanosystem (MP@AL) is prepared.
View Article and Find Full Text PDFAdv Healthc Mater
November 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.
Monocytes, as progenitors of macrophages and osteoclasts, play critical roles in various stages of bone repair, necessitating phase-specific regulatory mechanisms. Here, icariin (ICA) prodrug-like microspheres (ICA@GM) are developed, as lipid nanoparticle (LNP) transfection boosters, to construct mRNA-engineered monocytes for remodeling the bone microenvironment across multiple stages, including the acute inflammatory and repair phases. Initially, ICA@GM is prepared from ICA-conjugated gelatin methacryloyl via a microfluidics system.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, PR China.
The production of reactive oxygen species (ROS) is susceptible to external excitation or insufficient supply of related participants (, hydrogen peroxide (HO) and sensitizer), liming ROS-driven tumor treatment. Additionally, the lysosomal retention effect severely hinders the utilization of ROS-based nanosystems and severely restricted the therapeutic effect of tumors. Therefore, first reported herein an intelligent nanocatalyst, TCPP-Cu@MnO ((Mn)(Mn)(Mn)O), and proposed a programmed ROS amplification strategy to treat tumors.
View Article and Find Full Text PDFSci Bull (Beijing)
October 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:
Sci Bull (Beijing)
October 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China. Electronic address:
Nat Commun
October 2024
Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
Phototherapy can offer a safe and non-invasive solution against infections, while promoting wound healing. Conventional phototherapeutic devices are bulky and limited to hospital use. To overcome these challenges, we developed a wearable, flexible red and blue LED (r&bLED) patch controlled by a mobile-connected system, enabling safe self-application at home.
View Article and Find Full Text PDF