4 results match your criteria: "Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine[Affiliation]"

Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.

View Article and Find Full Text PDF

Background: Serum iron, an essential component of hemoglobin (Hb) synthesis in vivo, is a crucial parameter for evaluating the body's iron storage and metabolism capacity. Iron deficiency leads to reduced Hb synthesis in red blood cells and smaller red blood cell volume, ultimately resulting in iron-deficiency anemia. Although serum iron cannot independently evaluate iron storage or metabolism ability, it can reflect iron concentration in vivo and serve as a good predictor of iron-deficiency anemia.

View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) is a developmental program that plays a vital role in gastric cancer, including aspects of tumor progression, the metastatic process, and resistance to treatment. Here, we have designed an in vitro model that mimics the features of EMT as observed in gastric cancer. The results showed that both migration and invasion were enhanced in gastric cancer cells with Brachyury overexpression.

View Article and Find Full Text PDF

NDRG4 sensitizes CRC cells to 5-FU by upregulating DDIT3 expression.

Oncol Lett

November 2021

Department of Gastrointestinal Surgery, Xijing Hospital, Xi'an, Shaanxi 710032, P.R. China.

The incidence of colorectal cancer (CRC) has remained high in recent years, and 5-fluorouracil (5-FU) is a vital chemotherapeutic agent for its treatment. Our previous study reported that N-myc downstream-regulated gene 4 (NDRG4) plays a tumor-suppressive role in CRC, but the mechanisms associated with NDRG4 and 5-FU chemosensitivity remain unclear. The results of the present study demonstrate that NDRG4 sensitized CRC cells to 5-FU by upregulating DNA damage inducible transcript 3 (DDIT3).

View Article and Find Full Text PDF