43,779 results match your criteria: "Shaanxi University of Science & Technology Xi'an 710021 China htjiang_333@163.com.[Affiliation]"

Large bone defects are still a persistent challenge in orthopedics. The availability limitations and associated complications of autologous and allogeneic bone have prompted an increasing reliance on tissue engineering and regenerative medicine. In this study, we developed an injectable scaffold combining an acellular extracellular periosteal matrix hydrogel with poly(d,l-lactate--glycol-acetate) microspheres loaded with the E7 peptide and miR217 (miR217/E7@MP-GEL).

View Article and Find Full Text PDF

Ischemia reperfusion-induced myocardial injury is a prominent pathological feature in patients with coronary artery disease, contributing to significant mortality and morbidity rates. Mangiferin (MGF), the main active ingredient extracted from Anemarrhena asphodeloides Bge, has anti-inflammatory, anti-oxidation, anti-diabetes, and anti-tumor effects. The present study confirmed that the GAS6/Axl pathway was identified as a promising novel target for the treatment of myocardial ischemia reperfusion (IR) injury.

View Article and Find Full Text PDF

Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.

View Article and Find Full Text PDF

Background: Cardiac fibrosis plays a critical role in the progression of various forms of heart disease, significantly increasing the risk of sudden cardiac death. However, currently, there are no therapeutic strategies available to prevent the onset of cardiac fibrosis.

Methods And Results: Here, biomimetic ATP-responsive nanozymes based on genetically engineered cell membranes are adapted to specifically recognize activated cardiac fibroblasts (CFs) for the treatment of cardiac fibrosis.

View Article and Find Full Text PDF

Dynamic EIT technology for real-time non-invasive monitoring of acute pulmonary embolism: a porcine model experiment.

Respir Res

January 2025

Shaanxi Provincial Key Laboratory of Bioelectromagnetic Detection and Intelligent Perception, Department of Biomedical Engineering, Air Force Medical University, Xi'an, 710032, China.

Background: Acute pulmonary embolism represents the third most prevalent cardiovascular pathology, following coronary heart disease and hypertension. Its untreated mortality rate is as high as 20-30%, which represents a significant threat to patient survival. In view of the current lack of real-time monitoring techniques for acute pulmonary embolism, this study primarily investigates the potential of the pulsatility electrical impedance tomography (EIT) technique for the detection and real-time monitoring of acute pulmonary embolism through the collection and imaging of the pulsatile signal of pulmonary blood flow.

View Article and Find Full Text PDF

Purpose: Based on the demonstration of a circadian rhythm in the human oral mucosa cell cycle, with most cells in the G2/M phase in the afternoon and at night, the present study evaluated the severity of acute radiation esophagitis and treatment outcomes in esophageal squamous cell carcinoma patients receiving radiotherapy (RT) in the daytime versus in the evening.

Methods: From the 488 eligible patients of esophageal squamous cell carcinoma receiving concurrent chemoradiotherapy (CCRT), 369 patients received RT in the daytime (before 19:00) and 119 patients received RT in the evening (after 19:00). The grades of radiation esophagitis (Common Terminology Criteria for Adverse Events version 5.

View Article and Find Full Text PDF

Background: Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer, characterized by a dismal prognosis. In the absence of drug-targetable receptors, chemotherapy remains the sole systemic treatment alternative. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs) that target programmed death 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have provided renewed optimism for the treatment of patients with TNBC.

View Article and Find Full Text PDF

Background: Early diagnosis of syphilis is vital for its effective control. This study aimed to develop an Artificial Intelligence (AI) diagnostic model based on radiomics technology to distinguish early syphilis from other clinical skin lesions.

Methods: The study collected 260 images of skin lesions caused by various skin infections, including 115 syphilis and 145 other infection types.

View Article and Find Full Text PDF

Groundwater nitrate response to hydrogeological conditions and socioeconomic load in an agriculture dominated area.

Sci Rep

January 2025

School of Water and Environment, Chang'an University, No.126 Yanta Road, Xi'an, 710054, Shaanxi, China.

Nitrate pollution is widespread environmental concern in most shallow groundwater systems. This study conducts a comprehensive investigation of shallow groundwater, deep groundwater, and surface water in a region of the Chinese Loess Plateau. Nitrate pollution in this area is severe with more than half of the shallow groundwater samples exceeding the limit of nitrate for drinking water (50 mg/L).

View Article and Find Full Text PDF

Habitat requirements and species' ecological suitability are essential conditions for species conservation and management. Under the influence of different environmental variables, assessing the habitat quality of medicinal plants is an important issue to ensure the quality of medicinal plants and protect biodiversity. This study explores the impact of environmental variables on the distribution of Astragalus mongholicus Bunge (A.

View Article and Find Full Text PDF

Living Cell-Mediated Self-Assembly: From Monomer Design and Morphology Regulation to Biomedical Applications.

ACS Nano

January 2025

Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China.

The self-assembly of molecules into highly ordered architectures is a ubiquitous and natural process, wherein molecules spontaneously organize into large structures to perform diverse functions. Drawing inspiration from the formation of natural nanostructures, cell-mediated self-assembly has been developed to create functional assemblies both inside and outside living cells. These techniques have been employed to regulate the cellular world by leveraging the dynamic intracellular and extracellular microenvironment.

View Article and Find Full Text PDF

The acidophilic and heat-resistant characteristics of Alicyclobacillus acidoterrestris (A. acidoterrestris) pose significant challenges to fruit juice production. Traditional thermal removal methods are often ineffective against this resilient bacterium.

View Article and Find Full Text PDF

Photodynamic inactivation mediated by natural alizarin on bacteria for the safety of fresh-cut apples.

Food Res Int

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China. Electronic address:

Most photosensitizers have limited responsiveness to visible light, however, visible light is a light source with a wide range of wavelengths and the most common in daily life, and making full use of visible light can help to enhance the photodynamic antimicrobial properties of photosensitizers. To tackle this issue, this study confirmed that alizarin has a good absorption capacity for visible light by UV-DRS analysis. Theoretical calculations showed that alizarin might be excited through the charge transfer (CT) mechanism.

View Article and Find Full Text PDF

Introduction: Multitasking during flights leads to a high mental workload, which is detrimental for maintaining task performance. Electroencephalography (EEG) power spectral analysis based on frequency-band oscillations and microstate analysis based on global brain network activation can be used to evaluate mental workload. This study explored the effects of a high mental workload during simulated flight multitasking on EEG frequency-band power and microstate parameters.

View Article and Find Full Text PDF

N6-methyladenosine (mA), a well-known post-transcriptional modification, is implicated in diverse cellular and physiological processes. However, much remains unknown regarding the precise role and mechanism of mA modification on muscle development. In this study, we make observation that the levels of mA and METTL3 are markedly elevated during the differentiation phase (DM) compared to the growth phase (GM) in both C2C12 and bovine myoblasts.

View Article and Find Full Text PDF

Genomic Selection and WssGWAS of Sheep Body Weight and Milk Yield: Imputing Low-Coverage Sequencing Data with Similar Genetic Background Panels.

J Dairy Sci

January 2025

College of Animal Science and Technology, Northwest A&F University, 22 nt, Xinong Road, Yangling, Shaanxi, China. Electronic address:

Low-coverage whole-genome sequencing (LcWGS), a cost-effective genotyping method, offers greater flexibility in variant detection than does single-nucleotide polymorphism (SNP) chips. However, to our knowledge, no studies have explored the application of LcWGS in sheep. This study aimed to evaluate the feasibility of implementing LcWGS and genotype imputation and assess their applicability in genomic studies of body weight and milk yield in sheep.

View Article and Find Full Text PDF

Multi-view clustering has garnered significant attention due to its capacity to utilize information from multiple perspectives. The concept of anchor graph-based techniques was introduced to manage large-scale data better. However, current methods rely on K-means or uniform sampling to select anchors in the original space.

View Article and Find Full Text PDF

Novel nanomaterials-based combating strategies against drug-resistant bacteria.

Colloids Surf B Biointerfaces

December 2024

College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.

View Article and Find Full Text PDF

Ultrafast, Robust, and Reversible Self-Assembled Nanofibers via Thiolactone Chemistry Strategy.

Small

January 2025

Xi'an Key Laboratory of Functional Organic Porous Materials, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710129, P. R. China.

Self-assembly in supramolecular chemistry is crucial for nanostructure creation but faces challenges like slow speeds and lack of reversibility. In this study, a novel comb-like polymer poly(amide sulfide) (PAS) based on thiolactone chemistry is reported, which rapidly self-assemble into stable nanofibers, offering excellent robustness and reversibility in the self-assembled structure. The PAS backbone contains pairs of amide bonds, each linked to an alkyl side chain in a controlled 2:1 ratio.

View Article and Find Full Text PDF

Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock.

PLoS Genet

January 2025

School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.

A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.

View Article and Find Full Text PDF

The Effects of Resonance Frequency Breathing on Cardiovascular System and Brain-Cardiopulmonary Interactions.

Appl Psychophysiol Biofeedback

January 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P. R. China.

Resonance frequency (RF) is characterized as the specific frequency at which a system, equipped with delayed self-correction or negative feedback mechanisms, exhibits maximal amplitude oscillations in response to an external stimulus of a particular frequency. Emerging evidence suggests that the cardiovascular system has an inherent RF, and that breathing at this frequency can markedly enhance health and cardiovascular function. However, the efficacy of resonance frequency breathing (RFB) and the specific responses of the cardiovascular, respiratory, and central nervous systems during RFB remain unclear.

View Article and Find Full Text PDF

Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants.

View Article and Find Full Text PDF

Acute liver failure (ALF) is marked by a substantial generation of reactive oxygen species (ROS), which can induce both cellular senescence and a pronounced inflammatory response. Senescent cells secrete factors collectively termed the senescence-associated secretory phenotype (SASP), which exacerbate inflammation, while inflammation can reciprocally promote cellular senescence. Quercetin (Que), recognized for its ROS-scavenging capabilities, holds the potential for anti-inflammatory and anti-senescent effects.

View Article and Find Full Text PDF

Electrocatalytic urea synthesis from carbon dioxide (CO2) and nitrate (NO3-) offers a promising alternative to traditional industrial methods. However, current catalysts face limitations in the supplies of CO* and Nrelated* intermediates, and their coupling, resulting in unsatisfactory urea production efficiency and energy consumption. To overcome these challenges, we carried out tandem electrosynthesis approach using ruthenium dioxide-supported palladium-gold alloys (Pd2Au1/RuO2).

View Article and Find Full Text PDF

Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).

View Article and Find Full Text PDF