269 results match your criteria: "Shaanxi International Joint Research Center for Oral Diseases[Affiliation]"

Autonomic neural regulation in mediating the brain-bone axis: mechanisms and implications for regeneration under psychological stress.

QJM

February 2024

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.

Efficient regeneration of bone defects caused by disease or significant trauma is a major challenge in current medicine, which is particularly difficult yet significant under the emerging psychological stress in the modern society. Notably, the brain-bone axis has been proposed as a prominent new concept in recent years, among which autonomic nerves act as an essential and emerging skeletal pathophysiological factor related to psychological stress. Studies have established that sympathetic cues lead to impairment of bone homeostasis mainly through acting on mesenchymal stem cells (MSCs) and their derivatives with also affecting the hematopoietic stem cell (HSC)-lineage osteoclasts, and the autonomic neural regulation of stem cell lineages in bone is increasingly recognized to contribute to the bone degenerative disease, osteoporosis.

View Article and Find Full Text PDF

Aspirin loaded extracellular vesicles inhibit inflammation of macrophages via switching metabolic phenotype in periodontitis.

Biochem Biophys Res Commun

July 2023

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China. Electronic address:

Objectives: Changes of macrophage in the local immune microenvironment of periodontitis cause alveolar bone resorption. This study aims to investigate the effect of a new drug delivery method of aspirin on the immune microenvironment of periodontitis to promote alveolar bone repair, and to explore mechanism of aspirin's effect on macrophage.

Methods: We isolated extracellular vesicles (EVs) from periodontal stem cells (PDLSCs) and loaded with aspirin by sonication, and then evaluated the treatment efficacy of aspirin-loaded vesicles (EVs-ASP) in periodontitis model in mice.

View Article and Find Full Text PDF

Construction, Characterization, and Regenerative Application of Self-Assembled Human Mesenchymal Stem Cell Aggregates.

J Vis Exp

March 2023

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University;

Mesenchymal stem cells (MSCs), characterized by their self-renewal ability and multilineage differentiation potential, can be derived from various sources and are emerging as promising candidates for regenerative medicine, especially for regeneration of the tooth, bone, cartilage, and skin. The self-assembled approach of MSC aggregation, which notably constructs cell clusters mimicking the developing mesenchymal condensation, allows high-density stem cell delivery along with preserved cell-cell interactions and extracellular matrix (ECM) as the microenvironment niche. This method has been shown to enable efficient cell engraftment and survival, thus promoting the optimized application of exogenous MSCs in tissue engineering and safeguarding clinical organ regeneration.

View Article and Find Full Text PDF

The blood vessel system is essential for skin homeostasis and regeneration. While the heterogeneity of vascular endothelial cells has been emergingly revealed, whether a regeneration-relevant vessel subtype exists in skin remains unknown. Herein, a specialized vasculature in skin featured by simultaneous CD31 and EMCN expression contributing to the regeneration process is identified, the decline of which functionally underlies the impaired angiogenesis of diabetic nonhealing wounds.

View Article and Find Full Text PDF

Mitochondrial Calcium Nanoregulators Reverse the Macrophage Proinflammatory Phenotype Through Restoring Mitochondrial Calcium Homeostasis for the Treatment of Osteoarthritis.

Int J Nanomedicine

April 2023

Shaanxi Clinical Research Center for Oral Disease & Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China.

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disease accompanied by an elevated macrophage proinflammatory phenotype, which is triggered by persistent pathologically elevated calcium ion levels in mitochondria. However, existing pharmacological compounds targeting the inhibition of mitochondrial calcium ion (m[Ca]) influx are currently limited in terms of plasma membrane permeability and low specificity for ion channels and transporters. In the present study, we synthesized mesoporous silica nanoparticle-amidated (MSN)-ethylenebis (oxyethylenenitrilo)tetraacetic acid (EGTA)/triphenylphosphine (TPP)-polyethylene glycol (PEG) [METP] nanoparticles (NPs), which specifically target mitochondria and block excess calcium ion influx.

View Article and Find Full Text PDF

Mesenchymal stem cells: Emerging concepts and recent advances in their roles in organismal homeostasis and therapy.

Front Cell Infect Microbiol

March 2023

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi, China.

Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs.

View Article and Find Full Text PDF

A viscoelastic alginate-based hydrogel network coordinated with spermidine for periodontal ligament regeneration.

Regen Biomater

February 2023

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China.

Periodontitis can cause irreversible defects in the periodontal ligament (PDL), the regeneration of which is the major obstacle to the clinical treatment of periodontitis. Implanting hydrogel for releasing anti-inflammatory drugs is a promising treatment to promote PDL regeneration. However, existing hydrogel systems fail to mimic the typical viscoelastic feature of native periodontium, which may have been shown as an important role in tissue regeneration.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is one of the most common inherited mental retardation diseases and is caused by the loss of fragile X mental retardation protein (FMRP) expression. The metabotropic glutamate receptor (mGluR) theory of FXS states that enhanced mGluR-dependent long-term depression (LTD) due to FMRP loss is involved in aberrant synaptic plasticity and autistic-like behaviors, but little is known about the underlying molecular mechanism. Here, we found that only hippocampal mGluR-LTD was exaggerated in adolescent Fmr1 KO mice, while N-methyl-D-aspartate receptor (NMDAR)-LTD was intact in mice of all ages.

View Article and Find Full Text PDF

Rescuing "hopeless" avulsed teeth using autologous platelet-rich fibrin following delayed reimplantation: Two case reports.

World J Clin Cases

January 2023

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry and Emergency, School of Stomatology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.

Article Synopsis
  • Tooth avulsion is when a tooth gets knocked out, and it can be very serious, often leading to other problems if not handled quickly.* -
  • In two cases, teenage boys had their teeth knocked out, but doctors used a special treatment called platelet-rich fibrin (PRF) to help save the teeth during reimplantation.* -
  • The doctors found that PRF helped the teeth heal well without common issues like root resorption, showing that this method could be a great option for saving teeth that usually wouldn’t have a good chance.*
View Article and Find Full Text PDF

Humoral regulation of iron metabolism by extracellular vesicles drives antibacterial response.

Nat Metab

January 2023

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, PR China.

Immediate restriction of iron initiated by the host is a critical process to protect against bacterial infections and has been described in the liver and spleen, but it remains unclear whether this response also entails a humoral mechanism that would enable systemic sequestering of iron upon infection. Here we show that upon bacterial invasion, host macrophages immediately release extracellular vesicles (EVs) that capture circulating iron-containing proteins. Mechanistically, in a sepsis model in female mice, Salmonella enterica subsp.

View Article and Find Full Text PDF

Mesenchymal condensation in tooth development and regeneration: a focus on translational aspects of organogenesis.

Physiol Rev

July 2023

State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.

The teeth are vertebrate-specific, highly specialized organs performing fundamental functions of mastication and speech, the maintenance of which is crucial for orofacial homeostasis and is further linked to systemic health and human psychosocial well-being. However, with limited ability for self-repair, the teeth can often be impaired by traumatic, inflammatory, and progressive insults, leading to high prevalence of tooth loss and defects worldwide. Regenerative medicine holds the promise to achieve physiological restoration of lost or damaged organs, and in particular an evolving framework of developmental engineering has pioneered functional tooth regeneration by harnessing the odontogenic program.

View Article and Find Full Text PDF

MSCs-derived apoptotic extracellular vesicles promote muscle regeneration by inducing Pannexin 1 channel-dependent creatine release by myoblasts.

Int J Oral Sci

January 2023

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases& Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Air Force Medical University, Xi'an, China.

Severe muscle injury is hard to heal and always results in a poor prognosis. Recent studies found that extracellular vesicle-based therapy has promising prospects for regeneration medicine, however, whether extracellular vesicles have therapeutic effects on severe muscle injury is still unknown. Herein, we extracted apoptotic extracellular vesicles derived from mesenchymal stem cells (MSCs-ApoEVs) to treat cardiotoxin induced tibialis anterior (TA) injury and found that MSCs-ApoEVs promoted muscles regeneration and increased the proportion of multinucleated cells.

View Article and Find Full Text PDF

ANTXR1 as a potential sensor of extracellular mechanical cues.

Acta Biomater

March 2023

Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China. Electronic address:

Cell adhesion molecules mediate cell-cell or cell-matrix interactions, some of which are mechanical sensors, such as integrins. Emerging evidence indicates that anthrax toxin receptor 1 (ANTXR1), a newly identified cell adhesion molecule, can also sense extracellular mechanical signals such as hydrostatic pressure and extracellular matrix (ECM) rigidity. ANTXR1 can interact with ECM through connecting intracellular cytoskeleton and ECM molecules (just like integrins) to regulate numerous biological processes, such as cell adhesion, cell migration or ECM homeostasis.

View Article and Find Full Text PDF

Proteomic analysis identifies Stomatin as a biological marker for psychological stress.

Neurobiol Stress

January 2023

State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.

Psychological stress emerges to be a common health burden in the current society for its highly related risk of mental and physical disease outcomes. However, how the quickly-adaptive stress response process connects to the long-observed organismal alterations still remains unclear. Here, we investigated the profile of circulatory extracellular vesicles (EVs) after acute stress (AS) of restraint mice by phenotypic and proteomic analyses.

View Article and Find Full Text PDF

Occlusal disharmony has a negative impact on emotion. The mesencephalic trigeminal nucleus (Vme) neurons are the primary afferent nuclei that convey proprioceptive information from proprioceptors and low-threshold mechanoreceptors in the periodontal ligament and jaw muscles in the cranio-oro-facial regions. The dorsomedial part of the principal sensory trigeminal nucleus (Vpdm) and the ventral posteromedial nucleus (VPM) of thalamus have been proven to be crucial relay stations in ascending pathway of proprioception.

View Article and Find Full Text PDF

Emerging role of mesenchymal stem cell-derived extracellular vesicles in oral and craniomaxillofacial tissue regenerative medicine.

Front Bioeng Biotechnol

November 2022

State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi International Joint Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.

Mesenchymal stem cells (MSCs) are multipotent stem cells with differentiation potential and paracrine properties, drawing significant attention in the field of regenerative medicine. Extracellular vesicles (EVs), mainly including exosomes, microvesicles and apoptotic bodies (ABs), are predominantly endosomal in origin and contain bioactive molecules, such as miRNAs, mRNAs, and proteins, which are transferred from their original cells to target cells. Recently it has emerged that MSC-derived EVs (MSC-EVs) combine the advantages of MSCs and EVs, which may be used as a promising MSC-based therapy in tissue repair and regeneration.

View Article and Find Full Text PDF

Author Correction: miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice.

Sci Rep

December 2022

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.

View Article and Find Full Text PDF

To investigate the effects of long non-coding RNA (lncRNA) LINC01133 on the cementogenic differentiation of human periodontal ligament stem cells (hPDLSC) and the underlying mechanism. A total of 12 teeth were harvested from 10 patients aged 17-30 years in the Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University for impacted or orthodontic reasons from September 2021 to January 2022. The hPDLSCs were isolated from the teeth and transfected with small interfering RNA-LINC01133 (si-LINC01133) or small interfering RNA-negative control (si-NC).

View Article and Find Full Text PDF

Focusing on cyclin-dependent kinases 5: A potential target for neurological disorders.

Front Mol Neurosci

November 2022

Department of Infection, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, The First Batch of Key Disciplines On Public Health in Chongqing, Chongqing, China.

Cyclin-dependent kinases 5 (Cdk5) is a special member of proline-directed serine threonine kinase family. Unlike other Cdks, Cdk5 is not directly involved in cell cycle regulation but plays important roles in nervous system functions. Under physiological conditions, the activity of Cdk5 is tightly controlled by p35 or p39, which are specific activators of Cdk5 and highly expressed in post-mitotic neurons.

View Article and Find Full Text PDF

Isolation and Analysis of Traceable and Functionalized Extracellular Vesicles from the Plasma and Solid Tissues.

J Vis Exp

October 2022

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University;

Circulating and tissue-resident extracellular vesicles (EVs) represent promising targets as novel theranostic biomarkers, and they emerge as important players in the maintenance of organismal homeostasis and the progression of a wide spectrum of diseases. While the current research focuses on the characterization of endogenous exosomes with the endosomal origin, microvesicles blebbing from the plasma membrane have gained increasing attention in health and sickness, which are featured by an abundance of surface molecules recapitulating the membrane signature of parent cells. Here, a reproducible procedure is presented based on differential centrifugation for extracting and characterizing EVs from the plasma and solid tissues, such as the bone.

View Article and Find Full Text PDF

Isolation, Characterization, and Therapeutic Application of Extracellular Vesicles from Cultured Human Mesenchymal Stem Cells.

J Vis Exp

September 2022

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University; Xi'an Institute of Tissue Engineering and Regenerative Medicine;

Extracellular vesicles (EVs) are heterogeneous membrane nanoparticles released by most cell types, and they are increasingly recognized as physiological regulators of organismal homeostasis and important indicators of pathologies; in the meantime, their immense potential to establish accessible and controllable disease therapeutics is emerging. Mesenchymal stem cells (MSCs) can release large amounts of EVs in culture, which have shown promise to jumpstart effective tissue regeneration and facilitate extensive therapeutic applications with good scalability and reproducibility. There is a growing demand for simple and effective protocols for collecting and applying MSC-EVs.

View Article and Find Full Text PDF

Bolus volume is very important in the biomechanics of swallowing. By noninvasively characterizing swallow responses to volume challenges, we can gain more knowledge on swallowing and evaluate swallowing behavior easily. This study aimed to evaluate the impact of bolus volume on the biomechanical characteristics of oropharyngeal swallowing events with a noninvasive sensing system.

View Article and Find Full Text PDF

Protocol for differential centrifugation-based separation and characterization of apoptotic vesicles derived from human mesenchymal stem cells.

STAR Protoc

December 2022

State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:

Apoptotic vesicles (apoVs) are specific extracellular vesicles generated during apoptosis and play important roles in multiple physiological and pathophysiological settings. Here, we present a protocol using differential centrifugation to separate apoVs from human mesenchymal stem cells (MSCs) after induction of apoptosis. We describe how to characterize apoV size and morphology by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM), and determination of specific biomarker expression by immunoblotting.

View Article and Find Full Text PDF

Optimized immunofluorescence staining protocol for identifying resident mesenchymal stem cells in bone using LacZ transgenic mice.

STAR Protoc

December 2022

State Key Laboratory of Military Stomatology& National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China. Electronic address:

Glioma-associated oncogene homolog 1 (Gli1) marks a subpopulation of endogenous mesenchymal stem cells (MSCs) characterized by perivascular location. Here, we present an optimized immunofluorescence staining protocol to identify resident Gli1 MSCs in fixed/frozen bone sections from LacZ transgenic mice. This protocol describes the preparation of fixed/frozen tissue sections and the use of LacZ immunofluorescent staining for the in vivo characterization of endogenous MSCs, regarding their specific identity and specialized niches, and is applicable to LacZ-expressing cells of diverse organs.

View Article and Find Full Text PDF

Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery-a promising method for tissue regeneration.

Front Cell Dev Biol

August 2022

Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Biomaterials, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China.

Mesenchymal stem cells (MSCs) have become the preferred seed cells for tissue regeneration. Nevertheless, due to their immunogenicity and tumorigenicity, MSC transplantation remains questionable. Extracellular vesicles (EVs) derived from MSCs are becoming a promising substitute for MSCs.

View Article and Find Full Text PDF