135,049 results match your criteria: "School of chemistry[Affiliation]"

Here,we disclose a halogen α-nucleophilic addition via photocatalytic oxidation of the in-situ generated α-carbonyl radical of amides or esters to corresponding α-carbonyl cation. The α-carbon radical is generated by the β-addition of difluoroalkyl radical, formed by the photocatalytic reduction of BrCF2CO2R, to the α,β-unsaturated amides/esters. This umpolung strategy enables an efficient three-component difluoroalkyl-halogenation of α,β-unsaturated amides or esters with BrCF2CO2R and Cl/F-nucleophiles to produce diverse biologically important CF2-containing α-halo-1,5-dicarboxylic derivatives under mild conditions.

View Article and Find Full Text PDF

Insight into the Specific Adsorption of Cu(II) by a Zinc-Based Metal-Organic Framework Mediated via a Proton-Exchange Mechanism.

Langmuir

March 2025

China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.

View Article and Find Full Text PDF

In-situ quantitative detection of hypochlorous acid in food samples by employing a near-infrared fluorescent probe in association with a portable optical data acquisition system.

Anal Chim Acta

May 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, PR China; Key Laboratory of Modern Agricultural Equipment and Technology (Ministry of Education), Jiangsu University, Zhenjiang, Jiangsu, 212013 PR China. Electronic address:

Background: Hypochlorous acid (HClO) is a crucial disinfectant in the food industry. It can be used to soak perishable foods like vegetables, fruits, eggs, fish, and raw meat before processing and storage, eliminating microorganisms, bacteria, fungi, and pathogens to ensure food safety. HClO also helps preserve vegetables and fruits by reducing ethylene production, delaying rotting, decreasing cell membrane permeability, inhibiting polyphenol oxidase activity, and postponing discoloration.

View Article and Find Full Text PDF

Background: Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant with significant risks to ecosystems and human health. Magnetic molecularly imprinted polymers (MIPs) provide a promising solution for selectively extracting PFOS from contaminated water. However, while bifunctional monomer imprinting improves the imprinting effect by introducing diverse functional groups, it can also increase non-specific adsorption.

View Article and Find Full Text PDF

Cyclophilins have been implicated in the pathophysiology of metabolic dysfunction-associated steatohepatitis (MASH). Pharmacological inhibition of the cyclophilin B isoform has the potential to attenuate liver fibrosis in MASH, but current cyclophilin inhibitors in clinical trials lack isoform selectivity. We previously reported the novel tri-vector small-molecule inhibitor that exhibited improved subtype selectivity by simultaneously engaging three pockets on the surface of cyclophilins.

View Article and Find Full Text PDF

Dynamic reactive synthesis of bio-based compatibilizer via diepoxide monomers grafting polylactic acid and reactive compatibilization of incompatible polylactic acid/bamboo powder composites.

Int J Biol Macromol

March 2025

School of Chemistry and Chemical Engineering Hainan University, Haikou 570228, Hainan Province, China; Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, Zhejiang Province, China. Electronic address:

The synthesis of monomers with two epoxy structures (EIA) was successfully achieved by adopting holo-biobased feedstocks and in situ solvolysis reaction. The molecular structure of EIA was subjected to characterization through the use of infrared spectroscopy (IR), mass spectrometry (MS), and nuclear magnetic resonance hydrogen spectroscopy (H NMR). The EIA was employed as the epoxy monomers for the synthesis of the grafted compatibilizer, resulting in the successful preparation of a fully bio-based and high epoxy value grafted compatibilizer (PLA-g-EIA (PLE)).

View Article and Find Full Text PDF

A corrosion and wear resistant coating was developed on the surface of titanium alloy using micro-arc oxidation (MAO) technology with addition of lignin sulfonate (SLS) as an additive in electrolytes containing 15 g/L of NaSiO·9HO and 10 g/L of NaPO·12HO. The effects of concentration of SLS on the surface morphology, microstructure, and corrosion-wear performance of the MAO coatings were systematically investigated. Wetting properties and mechanical characteristics of MAO coatings were determined by contact angle measurements, microhardness testing, and bonding strength assessments.

View Article and Find Full Text PDF

Letter to Editor regarding: rethinking hospital status in gastric cancer surgery.

J Gastrointest Surg

March 2025

Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

View Article and Find Full Text PDF

Letter to Editor regarding: unveiling the complexity of surgical delay in appendicitis.

J Gastrointest Surg

March 2025

Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

View Article and Find Full Text PDF

Distribution and potential sources of iodine in particulate matter at an industrial city in Northwest China.

Environ Res

March 2025

School of Chemistry and Chemical Engineering, and Key Laboratory of Environmental Monitoring and Pollutant Control of Xinjiang, Shihezi University, Shihezi, Xinjiang 832003, P. R. China. Electronic address:

Iodine plays a key role in atmospheric chemistry that can significantly affect the atmospheric oxidation capacity. Although the oceans are the main reservoir of iodine on Earth, iodine is also widely present in the terrestrial environment. Therefore, a comprehensive understanding of the present sources of iodine in inland areas is warranted for the evaluation of its environmental effect.

View Article and Find Full Text PDF

Preparation of the conjugated hypercrosslinked polymers containing phenylenediamine and phenylenetriamine derivatives for fluorescent sensing of three nitrophenols.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China.

Hypercrosslinked polymers (HCPs) are the most promising porous organic polymers for large-scale production due to their easy preparation, extensive raw material source, good stability, and large specific surface area. However, due to the lack of extended conjugability, their application in fluorescence sensing is limited. Herein, three conjugated hypercrosslinked polymers (the conjugated HCPs: TPPDA-DMB, TDPAB-DMB, and MTDAB-DMB) were easily prepared by the Friedel-Craft arylation reactions with phenylenediamine or phenylenetriamine derivatives and p-dimethoxybenzene (DMB).

View Article and Find Full Text PDF

Singlet oxygen (O) is the main active ingredient in photodynamic therapy (PDT). However, an excess O can cause unnecessary toxicity. Therefore, it is of great importance to develop reliable and sensitive methods or probes for detecting O in biological systems.

View Article and Find Full Text PDF

High performance persistent organic pollutants removal using stabilized enzyme aggregates over amino functionalized magnetic biochar.

J Hazard Mater

March 2025

Key laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. Electronic address:

Herein, a highly efficient and recyclable biocatalyst was developed using stabilized enzyme aggregates on amino-functionalized magnetic biochar for removing persistent organic pollutants from water. The biochar derived from biomass featured abundant hydroxyl functional groups, after functionalization with amino functional groups and magnetic nanoparticles, it was employed for laccase immobilization via enzyme electrostatic adsorption, precipitation and cross-linking in a favorable orientation. This immobilized enzyme aggregates exhibited enhanced pH tolerance, thermal and storage stability than free enzyme.

View Article and Find Full Text PDF

FeMo integrated covalent organic frameworks: Peroxidase-mimetic colorimetric biosensors for multivariate sensing hydrogen peroxide and ascorbic acid in serum and beverages.

Food Chem

March 2025

Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials of Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:

An efficient and readable sensor is desirable for food safety and diagnosis. Herein, a homogeneous mimicking enzyme was constructed by encapsulating polyoxometalate (NH₄)₃[FeMo₆O₁₈(OH)₆]·6H₂O (FeMo) into the covalent organic framework (FeMo@COF). Coordinating the spatial confinement effect of COF, FeMo exhibited superior peroxide-like activity to catalyze HO to O• which achieved the "on-off" consecutive sensing of HO and AA via a readable colorimetric mode, with the limit of detection (LOD) at 30 μM and 0.

View Article and Find Full Text PDF

The development of efficient and low-cost photocatalysts has always been sought in H production from water cracking. Herein, a series of MoB/MnCdS composites were developed for high-performance photocatalytic H production. MnCdS nanoparticles were deposited on bulk metalloid MoB via a hydrothermal method (as confirmed by morphology tests) to construct a Schottky heterojunction.

View Article and Find Full Text PDF

MOF-based nanomaterials for advanced aqueous-ion batteries.

Adv Colloid Interface Sci

March 2025

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Metal-organic frameworks (MOFs)-based nanomaterials have great potential in the field of electrochemical energy storage due to their abundant pore size, high specific surface area, controllable structure and porosity, and homogeneous metal center. MOFs complexes and derivatives not only inherit the original morphology characteristics of MOFs but also provide excellent electrochemical performance. Batteries operating in aqueous electrolytes are cheaper, safer, and have higher ionic conductivity than those operating in conventional organic electrolytes.

View Article and Find Full Text PDF

Targeting NLRP3 is a highly promising strategy for treating uncontrolled inflammation, which can cause a wide range of diseases or promote disease progression. More NLRP3-targeting inhibitors with different scaffolds are needed to increase the chances of developing safe and effective NLRP3 inhibitors and treating inflammation in different tissues. Here, we discovered the novel quinoline analogues that exhibit potent inhibitory activity against the NLRP3/IL-1β pathway in J774A.

View Article and Find Full Text PDF

Electrochemical uranium extraction from real nuclear wastewater with a high concentration of fluoride ions (F-) represents a promising strategy for the efficient treatment of radioactive wastewater and the recovery of the valuable uranium resource. However, the current progress suffers from the interference of extremely high concentration of F- and undesired purity of the final uranium product. Herein, we constructed the neighboring ensemble Lewis acid-base pair sites (ensemble Lewis sites) in bismuth oxides as the extraction material, which was integrated into a designed tandem electrochemical device for efficient recovery of high-purity uranium from real nuclear wastewater.

View Article and Find Full Text PDF

Filament-woven SF/PA gel for removing ultrafine nanoparticles and unmanageable hazardous pollutants by "all-in-one net".

J Environ Manage

March 2025

School of Chemistry and Chemical Engineering, Guangxi University, 100 East University Road, Nanning, 530004, PR China. Electronic address:

The current state of the world's water resources is facing serious challenges, and the current water purification processes are designed for a single, more specific contaminant, with more stringent constraints, which are not suitable for emergency water treatment in stochastic environment and may cause secondary pollution. It is necessary to provide a water purification method that is convenient, easy-to-operate, one-step treatment of multiple pollutants. Herein, silk fibroin (SF) that extracted from discarded silkworm cocoons and recycled silk and phytic acid (PA) are "woven" into a network structure through hydrogen bonding and electrostatic interaction to form a unique gel, which could be used to remove different pollutants by "sweeping and catching" and physical adsorption.

View Article and Find Full Text PDF

Exploring the Anion Site Disorder Kinetics in Lithium Argyrodites.

J Am Chem Soc

March 2025

Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstrasse 28/30, Münster D-48149, Germany.

Lithium argyrodites LiPS ( = Cl, Br, I) are a promising class of solid-state electrolytes with the potential to achieve high conductivities (>10 mS·cm) necessary for use in solid-state batteries. Previous research has shown that structural factors, in particular, site disorder between the sulfide and halide anions, can impact the ionic conductivity of lithium argyrodites. One current hypothesis for this correlation between anion site disorder and ionic transport is a connection to the lithium-ion substructure.

View Article and Find Full Text PDF

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

The electric control of magnetism has been considered to be promising for molecular spintronics and quantum information. However, the spin-electric coupling strength appears to be insufficient for application in most cases. Two major factors capable of amplifying the relative effect are spin-orbit coupling and ferroelectricity.

View Article and Find Full Text PDF

Gold-Catalyzed Synthesis of (Dihydro)quinolones by Cyclization of Benzaldehyde-Tethered Ynamides and Anilines.

Org Lett

March 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

2-Quinolones represent a versatile class of compounds that are prevalent in natural and medicinally relevant molecules. Here we report a new approach to the selective formation of these structures. By gold catalysis, a range of benzaldehyde-tethered ynamides reacted with anilines, leading to 4-amino-3,4-dihydro-2-quinolones with high efficiency and excellent diastereoselectivity in dichloromethane.

View Article and Find Full Text PDF

Copper-Catalyzed -Heteroannulation of [60]Fullerene with Aryl Sulfonamides and Paraformaldehyde: Synthesis and Functionalization of [60]Fullerene-Fused Imidazolidines.

Org Lett

March 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China.

The Cu(II)-catalyzed -heteroannulation reaction of [60]fullerene (C) with aryl sulfonamides and paraformaldehyde has been disclosed for the synthesis of diverse C-fused imidazolidines, of which one or both of the ArSO moieties could be removed selectively. Further transformations into the unexpected bicyclic 1,2,3,4-adduct and C-fused imidazolidinium iodide salt have also been demonstrated. A plausible reaction mechanism is proposed on the basis of control experiments.

View Article and Find Full Text PDF