8 results match your criteria: "School of Science University of Waikato Hamilton New Zealand.[Affiliation]"
Dispersal is a critical process in ecology and evolution, shaping global biodiversity patterns. In stream habitats, which often exist within diverse and fragmented landscapes, dispersal ensures population connectivity and survival. For aquatic insects in particular, landscape features may significantly influence the degree of genetic connectivity among populations.
View Article and Find Full Text PDFAim: To assess spatial patterns of genetic and species-level diversity for Namib Desert Collembola using mitochondrial DNA cytochrome oxidase subunit I (COI) gene sequences.
Location: Namib Desert gravel plains.
Taxon: Collembola (springtails).
The ecological implications of body size extend from the biology of individual organisms to ecosystem-level processes. Measuring body mass for high numbers of invertebrates can be logistically challenging, making length-mass regressions useful for predicting body mass with minimal effort. However, standardized sets of scaling relationships covering a large range in body length, taxonomic groups, and multiple geographical regions are scarce.
View Article and Find Full Text PDFTectonic plates subducting at trenches having strikes oblique to the absolute subducting plate motion undergo trench-parallel slab motion through the mantle, recently defined as a form of "slab dragging." We investigate here long-term slab-dragging components of the Tonga-Kermadec subduction system driven by absolute Pacific plate motion. To this end we develop a kinematic restoration of Tonga-Kermadec Trench motion placed in a mantle reference frame and compare it to tomographically imaged slabs in the mantle.
View Article and Find Full Text PDFInsects are important but overlooked components of forest ecosystems in New Zealand. For many insect species, information on foraging patterns and trophic relationships is lacking. We examined diet composition and selectivity in a large-bodied insect, the Auckland tree wētā , in three habitat zones in a lowland New Zealand forest.
View Article and Find Full Text PDFThe worldwide plant economic spectrum hypothesis predicts that leaf, stem, and root traits are correlated across vascular plant species because carbon gain depends on leaves being adequately supplied with water and nutrients, and because construction of each organ involves a trade-off between performance and persistence. Despite its logical and intuitive appeal, this hypothesis has received mixed empirical support. If traits within species diverge in their responses to an environmental gradient, then interspecific trait correlations could be weakened when measured in natural ecosystems.
View Article and Find Full Text PDF