3,875 results match your criteria: "School of Physical and Mathematical Sciences.[Affiliation]"
Sci Bull (Beijing)
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore; Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore 639798, Singapore. Electronic address:
Bound states in the continuum (BICs) are notable in photonics for their infinite Q factors. Perturbed BICs, or quasi-BICs (QBICs), have finite but ultra-high Q factors, enabling external coupling. So far, most studies have focused on the momentum-space properties of BICs and QBICs, with few discussions on their properties in real space.
View Article and Find Full Text PDFNano Lett
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.
Electro-optic (EO) modulation is a critical device action in photonics. Recently, the non-Drude dynamics induced by the Berry curvature dipole (BCD) in metals have attracted attention as a potential candidate for terahertz EO modulation. However, such BCD-induced EO effects can be challenging to realize, often requiring flat bands and complex materials such as a strained magic-angle twisted bilayer graphene on hexagonal boron nitride.
View Article and Find Full Text PDFEur J Neurosci
January 2025
National Institute of Education, Nanyang Technological University, Singapore.
Approximately 15%-20% of school-aged children suffer from mathematics learning difficulties (MLD). Most children with developmental dyscalculia (DD) or MLD also have comorbid cognitive deficits. Recent literature suggests that research should focus on uncovering the neural underpinnings of MLD across more inclusive samples, rather than limiting studies to pure cases of DD or MLD with highly stringent inclusion criteria.
View Article and Find Full Text PDFScience
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Tao and Corry used metadynamics, an enhanced sampling method to identify and classify Nav channel blockers.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Nat Commun
December 2024
School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
Metastable supramolecular polymerization under kinetic control has recently been recognized as a closer way to biosystem than thermodynamic process. While impressive works on metastable supramolecular systems have been reported, the library of available non-covalent driving modes is still small and a simple yet versatile solution is highly desirable to design for easily regulating the energy landscapes of metastable aggregation. Herein, we propose a coopetition-driven metastability strategy for parallel/perpendicular aromatic stacking to construct metastable supramolecular polymers derived from a class of simple monomers consisting of lateral indoles and aromatic core.
View Article and Find Full Text PDFSci Rep
December 2024
School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore, Singapore.
The outstanding performance of superconducting nanowire single-photon detectors (SNSPDs) has expanded their application areas from quantum technologies to astronomy, space communication, imaging, and LiDAR. As a result, there has been a surge in demand for these devices, that commercial products cannot readily meet. Consequently, more research and development efforts are being directed towards establishing in-house SNSPD manufacturing, leveraging existing nano-fabrication capabilities that can be customized and fine-tuned for specific needs.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, 695581 Kerala, India.
Cardiovascular disease is the primary cause of mortality worldwide, as stated by the World Health Organization. We utilized the red fluorescence emitted by copper nanoclusters (CuNCs) to detect cardiac Troponin T (cTnT). We designed a fluorescent probe to detect cTnT using an on-off-on technique.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
We show that a non-Hermitian lattice with a disclination can host topological disclination states that are induced by on-site gain and loss. The disclination states are inherently non-Hermitian as they do not exist in the limit of zero gain or loss. They arise from charge fractionalization in the non-Hermitian lattice, which we establish using non-Hermitian Wilson loops calculated with biorthogonal products.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore.
Although trifluoroacetic acid (TFA) is not typically considered a Hofmeister reagent, it has been demonstrated to modulate biocoacervation. We show that TFA can be employed to probe specific interactions in coacervating bioinspired peptide phenylalanine (Phe) F-labeled at a single site, altering its liquid-liquid phase separation (LLPS) behavior. Solid-state nuclear magnetic resonance (NMR) spectroscopy revealed two dynamically distinct binding modes of TFA with Phe, resulting in a structured, dipolar-ordered complex and a more dynamic complex, highlighting the proximity between TFA and Phe.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India; International Inter-University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India. Electronic address:
Bilirubin is an important biomarker indicative of human health metabolism, especially in jaundice disease. In this work, we develop an Eu (Europium)-tungstate complex-based turn-off luminescence detection method for bilirubin in human (urineand serum)samples. The Eu-tungstate complex was synthesized by a straightforward one-pot procedure at ambient temperature, utilizing Europium chloride and Sodium tungstate as the precursors.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing 211816, China; School of Chemistry & Materials Science, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China. Electronic address:
A multi-functional single-Fe-atom nanozyme (Fe-SAzyme) is designed, integrating the near-infrared photothermal property, the ability to carry chemoagent (doxorubicin - DOX), and nanocatalytic activities mimicking peroxidase, oxidase, and glutathione oxidase. The nanocatalytic activities act cooperatively to effectively produce cytotoxic radicals in the tumor microenvironment (TME), thereby leading to ferroptosis of cancer cells. The photothermal effect not only enhances the nanocatalytic therapy but also enables photothermal therapy.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
Waveguide interconnect coupling control is essential for enhancing the chip density of photonic integrated circuits to incorporate a growing number of components. However, a critical engineering challenge is to achieve both strong waveguide isolation and efficient long-range coupling on a single chip. Here, a novel photonic supercoupling phenomenon is demonstrated for waveguide coupling over separation distances from a quarter to five wavelengths (λ), leveraging the tunable mode tails and the vortex energy flow in topological valley Hall system.
View Article and Find Full Text PDFAnalyst
January 2025
Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom campus, Thiruvananthapuram-695581, Kerala, India.
Ischaemic stroke and glioma, as leading causes of mortality and long-term disability, pose critical challenges to healthcare systems, necessitating innovative approaches to enable early and cost-effective diagnosis for timely intervention. Glial fibrillary acidic protein (GFAP), an astrocyte-produced protein, is highly responsive to both ischaemic stroke and glioblastoma multiforme, with its levels correlating to the extent of brain damage. In this study, we present the development of an immunoassay probe for the ratiometric fluorescent detection of glial fibrillary acidic protein (GFAP), employing a monoclonal GFAP antibody-conjugated silicon quantum dots (Ab@SiQDs) and rhodamine B dye (RhB)-based immunoprobe.
View Article and Find Full Text PDFJ Optim Theory Appl
September 2024
Department of Mathematics and RiskLab, ETH Zurich, Zurich, Switzerland.
Dynamical systems theory has recently been applied in optimization to prove that gradient descent algorithms bypass so-called strict saddle points of the loss function. However, in many modern machine learning applications, the required regularity conditions are not satisfied. In this paper, we prove a variant of the relevant dynamical systems result, a center-stable manifold theorem, in which we relax some of the regularity requirements.
View Article and Find Full Text PDFInorg Chem
December 2024
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
Barium zirconium trisulfide (BZS) is a three-dimensional (3D) perovskite with optoelectronic properties suitable for photovoltaic (PV) and light-emitting diode (LED) applications that is conventionally reported in the orthorhombic (62) symmetry. Synchrotron X-ray diffraction, thermal analysis, and Raman and absorption spectroscopy revealed three high-temperature polymorphs that appear when BZS is heated in air prior to complete oxidation (BaZrS + 5O → BaSO + ZrO + 2SO↑) at 700 °C with the approximate stability ranges: BaZrS IV (62)T < 400 °CBaZrS III (63)400 °C ≤ T ≤ 500 °CBaZrS II14/ (140)500 °C ≤ T ≤ 700 °CDifferential scanning calorimetry (DSC) revealed exothermic features accompanying the IV → III and III → II phase changes. Furthermore, the direct band gap varied inversely with temperature with distinct energies for each polymorph (1.
View Article and Find Full Text PDFOrg Lett
December 2024
College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
We developed a novel, metal-free catalytic system for synthesizing a broad range of itaconates using α-ketoacids and allylic acetate. This method, leveraging phosphine and Mes-Acr(BF) catalysts, has proven versatile, enabling the efficient itaconation of peptides, the synthesis of bioactive itaconates, and the preparation of an itaconate-based bio-orthogonal probe.
View Article and Find Full Text PDFNano Lett
December 2024
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P. R. China.
Strong coupling between excitons and photons in optical microcavities leads to the formation of exciton polaritons, which maintain both the coherence of light and the interaction of matter. Recently, atomically thin monolayer semiconductors with a large exciton oscillator strength and high exciton binding energy have been widely used for realizing room-temperature exciton polaritons. Here, we demonstrated room-temperature exciton polaritons with a monolayer molecular crystal.
View Article and Find Full Text PDFNeural Netw
November 2024
School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China. Electronic address:
Due to limited photons, low-light environments pose significant challenges for computer vision tasks. Unsupervised domain adaptation offers a potential solution, but struggles with domain misalignment caused by inadequate utilization of features at different stages. To address this, we propose an Illumination-Guided Progressive Unsupervised Domain Adaptation method, called IPULIS, for low-light instance segmentation by progressively exploring the alignment of features at image-, instance-, and pixel-levels between normal- and low-light conditions under illumination guidance.
View Article and Find Full Text PDFNanophotonics
August 2024
Key Laboratory of Polar Materials and Devices, Department of Electronic Sciences, School of Physics and Electronic Sciences, East China Normal University, Shanghai 200241, China.
Nanophotonics
August 2024
Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore 637371, Singapore.
Nanophotonics
August 2024
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
Platinum diselenide (PtSe), classified as a noble metal dichalcogenide, has garnered substantial interest owing to its layer-dependent band structure, remarkable air-stability, and high charge-carrier mobilities. These properties make it highly promising for a wide array of applications in next-generation electronic and optoelectronic devices, as well as sensors. Additionally, two-dimensional (2D) PtSe demonstrates significant potential as a saturable absorber due to its exceptional nonlinear optical response across an ultrabroad spectra range, presenting exciting opportunities in ultrafast and nonlinear photonics.
View Article and Find Full Text PDFNanophotonics
May 2024
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Republic of Singapore.
Thin-film coatings offer a scalable optical platform, as compared to nanopatterned films, for various applications including structural coloring, photovoltaics, and sensing. Recently, Fano resonant optical coatings (FROCs) have gained attention. FROCs consist of coupled thin film nanocavities composed of a broadband and a narrowband optical absorber.
View Article and Find Full Text PDF