72,072 results match your criteria: "School of Pharmaceutical Sciences.[Affiliation]"

In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.

View Article and Find Full Text PDF

Background: The role and relevance of macrophages both as causes and therapeutics of cellular senescence is rapidly emerging. However, current knowledge regarding the extent and depth of senescence in macrophages in vivo is limited and controversial. Further, acute models of stress-induced senescence in transformed/cancerous macrophage cell lines are being used although their efficacy and relevance are not characterized.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a prevalent inflammatory vascular disease characterized by plaque formation, primarily composed of foam cells laden with lipids. Despite lipid-lowering therapies, effective plaque clearance remains challenging due to the overexpression of the CD47 molecule on apoptotic foam cells, inhibiting macrophage-mediated cellular efferocytosis and plaque resolution. Moreover, AS lesions are often associated with severe inflammation and oxidative stress, exacerbating disease progression.

View Article and Find Full Text PDF

Glutamate-rich WD40 repeat containing 1 (GRWD1) is a novel oncogene/oncoprotein that downregulates the p53 tumor suppressor protein through several mechanisms. One important mechanism involves binding of GRWD1 to RPL11, which competitively inhibits the RPL11-MDM2 interaction and releases RPL11-mediated suppression of MDM2 ubiquitin ligase activity toward p53. Here, we mined the TCGA (The Cancer Genome Atlas) database to gain in-depth insight into the clinical relevance of GRWD1.

View Article and Find Full Text PDF

Apatinib, a commonly used tyrosine kinase inhibitor in cancer treatment, can cause adverse reactions such as hypertension. Hypertension, in turn, can increase the risk of certain cancers. The coexistence of these diseases makes the use of combination drugs more common in clinical practice, but the potential interactions and regulatory mechanisms in these drug combinations are poorly understood.

View Article and Find Full Text PDF

Severe cases of COVID-19 are associated with immune responses that lead to a surge in inflammatory molecules, resulting in multi-organ failure and death. This significant increase in inflammatory factors is triggered by viral proteins. Open reading frame 8 (ORF8) has received particular attention as a unique accessory protein of SARS-CoV-2.

View Article and Find Full Text PDF

Introduction: Severe cutaneous adverse reactions (SCARs) are life-threatening and often linked to antiepileptic drugs (AEDs). Common types of SCARs include Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), and drug reaction with eosinophilia and systemic symptoms (DRESS). Immune-mediated mechanisms involving human leukocyte antigen () alleles have been implicated in the pathogenesis of this reaction.

View Article and Find Full Text PDF

Ligand Design with Accelerated Disulfide Formation with Serum Albumin to Extend Blood Retention.

ACS Med Chem Lett

January 2025

Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.

We proposed a novel ligand for the interaction with human serum albumin (HSA) to extend the blood half-life of small molecular weight therapeutics. The ligand features an alkyl chain and an activated disulfide to allow binding to the hydrophobic pockets of HSA and the formation of disulfide to Cys34 of HSA, thereby minimizing the initial renal clearance. The dual nature of the ligand-HSA bonding was expected to give the ligand long blood retention.

View Article and Find Full Text PDF

Despite the evident demand and promising potential of disulfide-functionalized amino acids and peptides in linker chemistry and peptide drug discovery, those disulfurated specifically at the α-position constitute a unique yet rather highly underexplored chemical space. In this study, we have developed a method for preparing -linked amino acid/peptide derivatives through a base-catalyzed disulfuration reaction of azlactones, followed by the ring-opening functionalization. The disulfuration reaction proceeds under mild conditions, yielding disulfurated azlactones in excellent yields across a variety of -dithiophthalimides and diverse azlactones derived from various amino acids and peptides.

View Article and Find Full Text PDF

Advances in VEGFR Inhibitors: A Comprehensive Review of Novel Anticancer Agents.

Anticancer Agents Med Chem

January 2025

School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India.

Cancer, characterized by aberrant cell growth, presents a formidable health challenge, impacting millions of individuals worldwide each year. Among the myriad mechanisms facilitating tumor progression, Vascular Endothelial Growth Factor receptors (VEGFR) play a pivotal role in driving angiogenesis the process by which tumors develop their own blood supply. This vascularization not only supports tumor nourishment and growth but also facilitates metastasis, enabling cancer to spread to distant sites.

View Article and Find Full Text PDF

Single-cell multi-omics deciphers hepatocyte dedifferentiation and illuminates maintenance strategies.

Cell Prolif

January 2025

MOE Key Laboratory of Bioinformatics, Beijing National Research Center for Information Science and Technology, Bioinformatics Division, Tsinghua University, Beijing, China.

Due to the similarity to human hepatocytes, porcine hepatocytes play an important role in hepatic research and drug evaluation. However, once hepatocytes were cultured in vitro, it was often prone to dedifferentiate, resulting in the loss of their characteristic features and normal functions, which impede their application in liver transplantation and hepatotoxic drugs evaluation. Up to now, this process has yet to be thoroughly investigated from the single-cell resolution and multi-omics perspective.

View Article and Find Full Text PDF

Importance of Computer-Aided Drug Design in Modern Pharmaceutical Research.

Curr Drug Discov Technol

December 2024

Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, PushpViharSector-3, M-B Road, New Delhi, 110017, India.

Background: Computer-Aided Drug Design (CADD) approaches are essential in the drug discovery and development process. Both academic institutions and pharmaceutical and biotechnology corporations utilize them to enhance the efficacy of bioactive compounds.

Objective: This study aims to entice researchers by investigating the benefits of Computer-Aided Drug and Design (CADD) and its fundamental principles.

View Article and Find Full Text PDF

Repurposing of drugs through nanocarriers (NCs) based platforms has been a recent trend in drug delivery research. Various routine drugs are now being repurposed to treat challenging neurodegenerative disorders including Alzheimer disease (AD). AD, at present is one of the challenging neurodegenerative disorders characterized by extracellular accumulation of amyloid-β and intracellular accumulations of neurofibrillary tangles.

View Article and Find Full Text PDF

Cannabinoid receptor 1 (CB1) regulates synaptic transmission through presynaptic receptors in nerve terminals, and its physiological roles are of clinical relevance. The cellular sources and synaptic targets of CB1-expressing terminals in the human cerebral cortex are undefined. We demonstrate a variable laminar pattern of CB1-immunoreactive axons and electron microscopically show that CB1-positive GABAergic terminals make type-2 synapses innervating dendritic shafts (69%), dendritic spines (20%) and somata (11%) in neocortical layers 2-3.

View Article and Find Full Text PDF

Introduction: Stroke-associated pneumonia (SAP) is a major cause of mortality during the acute phase of stroke. The ADS score is widely used to predict SAP risk but does not include 24-h non-contrast computed tomography-Alberta Stroke Program Early CT Score (NCCT-ASPECTS) or red cell distribution width (RDW). We aim to evaluate the added prognostic value of incorporating 24-h NCCT-ASPECTS and RDW into the ADS score and to develop a novel prediction model for SAP following thrombolysis.

View Article and Find Full Text PDF

Protein citrullination modification plays a pivotal role in the pathogenesis of rheumatoid arthritis (RA), and anti-citrullinated protein antibodies (ACPAs) are extensively employed for clinical diagnosis of RA. However, there remains limited understanding regarding specific citrullinated proteins and their implications in the progression of RA. In this study, we screen and verify insulin-like growth factor-2 mRNA binding protein 1 (IGF2BP1) as a novel citrullinated protein with significantly elevated citrullinated level in RA.

View Article and Find Full Text PDF

Saturated F2-rings from Alkenes.

Angew Chem Int Ed Engl

January 2025

Enamine Ltd, Organic synthesis for drug discovery, UKRAINE.

A general method to convert simple exocyclic alkenes (no Ar-substituents) into saturated F2-rings has been developed. The reaction involves the IIII-reagent C6F5I(OAc)2 (F5-PIDA). The reaction efficiently works on the mg-, g-, and even multigram scale.

View Article and Find Full Text PDF

Discovery of Brain-Penetrative Negative Allosteric Modulators of NMDA Receptors Using FEP-Guided Structure Optimization and Membrane Permeability Prediction.

J Chem Inf Model

January 2025

Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, Shandong, China.

-Methyl-d-aspartate (NMDA) receptors, a subtype of ionotropic glutamate receptors in the central nervous system (CNS), have garnered attention for their role in brain disorders. Specifically, GluN2A-containing NMDA receptors have emerged as a potential therapeutic target for the treatment of depressive disorders and epilepsy. However, the development of GluN2A-containing NMDA receptor-selective antagonists, represented by -(4-(2-benzoylhydrazine-1-carbonyl)benzyl)-3-chloro-4-fluorobenzenesulfonamide (TCN-201) and its derivatives, faces a significant challenge due to their limited ability to penetrate the blood-brain barrier (BBB), hampering their characterization and further advancement.

View Article and Find Full Text PDF

High cellular plasticity state of medulloblastoma local recurrence and distant dissemination.

Cell Rep Med

January 2025

Beijing Neurosurgical Institute, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China. Electronic address:

Medulloblastoma (MB), a heterogeneous pediatric brain tumor, poses challenges in the treatment of tumor recurrence and dissemination. To characterize cellular diversity and genetic features, we comprehensively analyzed single-cell/nucleus RNA sequencing (sc/snRNA-seq), single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq), and spatial transcriptomics profiles and identified distinct cellular populations in SHH (sonic hedgehog) and Group_3 subgroups, with varying proportions in local recurrence or dissemination. Local recurrence showed higher cycling tumor cell enrichment, whereas disseminated lesions had a relatively notable presence of differentiated subsets.

View Article and Find Full Text PDF

Background: Limited information exists regarding the pathophysiological interactions between osteoporosis and chronic obstructive pulmonary disease (COPD). Objective: To study the association of Osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL) in male COPD patients. Methods: An observational clinical study was conducted at Penang General Hospital in Malaysia.

View Article and Find Full Text PDF

The transforming growth factor β (TGF-β) type 1 receptor (ALK5) plays a key role in tumor microenvironment. Small-molecule inhibitors of TGFβR1 provides a prospective approach for the treatment of malignant tumors. In this study, a series of 4-((3-(tetrahydro-2H-pyran-4-yl)-1H-pyrazol-4-yl)oxy)quinoline derivatives were identified as novel, potential TGFβR1 inhibitors.

View Article and Find Full Text PDF

Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor.

Phytomedicine

December 2024

NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China. Electronic address:

Background: Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.

View Article and Find Full Text PDF

Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols.

J Agric Food Chem

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.

The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts.

View Article and Find Full Text PDF

Assembly and functional mechanisms of plant NLR resistosomes.

Curr Opin Struct Biol

January 2025

School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China. Electronic address:

Nucleotide-binding and leucine-rich repeat (NLR) proteins are essential intracellular immune receptors in both animal and plant kingdoms. Sensing of pathogen-derived signals induces oligomerization of NLR proteins, culminating in the formation of higher-order protein complexes known as resistosomes in plants. The NLR resistosomes play a pivotal role in mediating the plant immune response against invading pathogens.

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF