6 results match your criteria: "School of Medicine and the Christopher S. Bond Life Sciences Center[Affiliation]"

Wastewater-Based Epidemiology (WBE) is widely used to monitor the progression of SARS-CoV-2 pandemic. While there is a clear correlation between the number of COVID patients in a sewershed and the viral load in the wastewater, there is notable variability across different treatment plants. In particular, some facilities consistently exhibit higher viral content per diagnosed patient, implying a potential underestimation of the number of COVID patients, while others show a low viral load per diagnosed case, indicating potential attenuation of genetic material from the sewershed.

View Article and Find Full Text PDF

Biomarkers selection for population normalization in SARS-CoV-2 wastewater-based epidemiology.

Water Res

September 2022

School of Natural Resources, University of Missouri, Columbia, MO 65201, USA; Center for Agroforestry, University of Missouri, Columbia, MO 65201, USA. Electronic address:

Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) levels in the communities since the coronavirus disease 2019 (COVID-19) outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater is critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (PMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated and validated for their utility in normalizing the SARS-CoV-2 loads through two normalizing approaches using the data from 64 wastewater treatment plants (WWTPs) in Missouri.

View Article and Find Full Text PDF

Recent SARS-CoV-2 wastewater-based epidemiology (WBE) surveillance have documented a positive correlation between the number of COVID-19 patients in a sewershed and the level of viral genetic material in the wastewater. Efforts have been made to use the wastewater SARS-CoV-2 viral load to predict the infected population within each sewershed using a multivariable regression approach. However, reported clear and sustained variability in SARS-CoV-2 viral load among treatment facilities receiving industrial wastewater have made clinical prediction challenging.

View Article and Find Full Text PDF

Novel Compound Inhibitors of HIV-1 Vpu.

Viruses

April 2022

Department of Molecular Microbiology and Immunology, University of Missouri, School of Medicine and the Christopher S. Bond Life Sciences Center, Columbia, MO 65211, USA.

HIV-1 Vpu targets the host cell proteins CD4 and BST-2/Tetherin for degradation, ultimately resulting in enhanced virus spread and host immune evasion. The discovery and characterization of small molecules that antagonize Vpu would further elucidate the contribution of Vpu to pathogenesis and lay the foundation for the study of a new class of novel HIV-1 therapeutics. To identify novel compounds that block Vpu activity, we have developed a cell-based ‘gain of function’ assay that produces a positive signal in response to Vpu inhibition.

View Article and Find Full Text PDF

Unlabelled: Wastewater-based epidemiology (WBE) has been one of the most cost-effective approaches to track the SARS-CoV-2 levels in the communities since the COVID-19 outbreak in 2020. Normalizing SARS-CoV-2 concentrations by the population biomarkers in wastewater can be critical for interpreting the viral loads, comparing the epidemiological trends among the sewersheds, and identifying the vulnerable communities. In this study, five population biomarkers, pepper mild mottle virus (pMMoV), creatinine (CRE), 5-hydroxyindoleacetic acid (5-HIAA), caffeine (CAF) and its metabolite paraxanthine (PARA) were investigated for their utility in normalizing the SARS-CoV-2 loads through developed direct and indirect approaches.

View Article and Find Full Text PDF

The Human immunodeficiency virus-1 (HIV-1) accessory protein Vpu modulates numerous proteins, including the host proteins CD4 and BST-2/tetherin. Vpu interacts with the Skp, Cullin, F-Box (SCF) ubiquitin ligase through interactions with the F-Box protein βTrCP (1 and/or 2). This interaction is dependent on phosphorylation of S in Vpu.

View Article and Find Full Text PDF