461 results match your criteria: "School of Mechatronical Engineering[Affiliation]"

Bio-Inspired Take-Off Maneuver and Control in Vertical Jumping for Quadruped Robot with Manipulator.

Micromachines (Basel)

September 2021

Intelligent Robotics Institute, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

The jumping motion of legged robots is an effective way to overcome obstacles in the rugged microgravity planetary exploration environment. At the same time, a quadruped robot with a manipulator can achieve operational tasks during movement, which is more practical. However, the additional manipulator will restrict the jumping ability of the quadruped robot due to the increase in the weight of the system, and more active degrees of freedom will increase the control complexity.

View Article and Find Full Text PDF

Block compressed sensing (BCS) is a promising technology for image sampling and compression for resource-constrained applications, but it needs to balance the sampling rate and quantization bit-depth for a bit-rate constraint. In this paper, we summarize the commonly used CS quantization frameworks into a unified framework, and a new bit-rate model and a model of the optimal bit-depth are proposed for the unified CS framework. The proposed bit-rate model reveals the relationship between the bit-rate, sampling rate, and bit-depth based on the information entropy of generalized Gaussian distribution.

View Article and Find Full Text PDF

Brain-machine interfaces (BMIs) interpret human intent into machine reactions, and the visual stimulation (VS) paradigm is one of the most widely used of these approaches. Although VS-based BMIs have a relatively high information transfer rate (ITR), it is still difficult for BMIs to control machines in dynamic environments (for example, grabbing a dynamic object or targeting a walking person).In this study, we utilized a BMI based on augmented reality (AR) VS (AR-VS).

View Article and Find Full Text PDF

Optoelectronic tweezers (OET) is a noncontact micromanipulation technology for controlling microparticles and cells. In the OET, it is necessary to configure a medium with different electrical properties to manipulate different particles and to avoid the interaction between two particles. Here, a new method exploiting the interaction between different dielectric properties of micro-objects to achieve the trapping, transport, and release of particles in the OET system was proposed.

View Article and Find Full Text PDF

A tetrahedral DNA nanorobot with conformational change in response to molecular trigger.

Nanoscale

October 2021

Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Dynamic DNA origami nanostructures that respond to external stimuli are promising platforms for cargo delivery and nanoscale sensing. However, the low stability of such nanostructures under physiological conditions presents a major obstacle for their use in biomedical applications. This article describes a stable tetrahedral DNA nanorobot (TDN) programmed to undergo a controlled conformational change in response to epithelial cell adhesion molecule (EpCAM), a molecular biomarker specifically expressed on the circulating tumor cells.

View Article and Find Full Text PDF

Left-Handed or Right-Handed? Determinants of the Chirality of Helically Deformable Soft Actuators.

Soft Robot

October 2022

Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China.

Helical curling and spiral structure are very common in nature, which inspire researchers to create various forms of helical configurations and actuators. The helically deformable actuators perform asymmetric deformations and show different chirality, which means that they can be left handed or right handed. However, the mechanism of helical curling and especially how the key factors influence the chirality of the actuator have not been systematically explained and well understood.

View Article and Find Full Text PDF

Three-dimensional (3D) assembly of microstructures encapsulating co-cultured multiple cells can highly recapitulate the in vivo tissues, which has a great prospect in tissue engineering and regenerative medicine. In order to fully mimic the in vivo architecture, the hydrogel microstructure needs to be designed into a special shape and spatially organized without damage, which is very challenging because of its limited mechanical properties. Here, we propose a 3D assembly method for the construction of liver lobule-like microstructures (a mimetic gear-like microstructure of liver lobule) through the local fluidic interaction.

View Article and Find Full Text PDF

Myoelectric prosthesis has become an important aid to disabled people. Although it can help people to recover to a nearly normal life, whether they can adapt to severe working conditions is a subject that is yet to be studied. Generally speaking, the working environment is dominated by vibration.

View Article and Find Full Text PDF

Recent studies have shown that motor recovery following spinal cord injury (SCI) is task-specific. However, most consequential conclusions about locomotor functional recovery from SCI have been derived from quadrupedal locomotion paradigms. In this study, two monkeys were trained to perform a bipedal walking task, mimicking human walking, before and after T8 spinal cord hemisection.

View Article and Find Full Text PDF

The components in polymer-bonded explosive X, including cyclotetramethylene-tetranitramine, paraffin, and polytetrafluoroethylene, were determined using near-infrared (NIR) spectroscopy. Using partial least squares as the multivariate calibration method, quantitative calibration models for components in X were verified internally and externally. The possible combinations of eight general spectral pretreatment methods and different bands of the scanning spectral region (12,500-4000 cm) were established.

View Article and Find Full Text PDF

There is great interest in the development of micromotors which can convert energy to motion in sub-millimeter dimensions. Micromachines take the micromotor concept a step further, comprising complex systems in which multiple components work in concert to effectively realize complex mechanical tasks. Here we introduce light-driven micromotors and micromachines that rely on optoelectronic tweezers (OET).

View Article and Find Full Text PDF

Synthesis of a Reactive Template-Induced Core-Shell PZS@ZIF-67 Composite Microspheres and Its Application in Epoxy Composites.

Polymers (Basel)

August 2021

School of Materials Science and Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing 100081, China.

Developing superior properties of epoxy resin composites with high fire resistance, light smoke, and low toxicity has been the focus of the research in the flame-retardant field. In particular, it is essential to decrease the emissions of toxic gases and smoke particles generated during the thermal decomposition of epoxy resin (EP) to satisfy the industrial requirements for environmental protection and safety. Consequently, the PZS@ZIF-67 composite was designed and synthesized by employing the hydroxyl group-containing polyphosphazene (poly(cyclotriphosphazene-co-4,4'-dihydroxydiphenylsulfone), PZS) as both the interfacial compatibility and an in situ template and the ZIF-67 nanocrystal as a nanoscale coating and flame-retardant cooperative.

View Article and Find Full Text PDF

Epilepsy is common brain dysfunction, where abnormal synchronized activities can be observed across multiple brain regions. Low-frequency focused pulsed ultrasound has been proven to modulate the epileptic brain network. In this study, we used two modes of low-intensity focused ultrasound (pulsed-wave and continuous-wave) to sonicate the brains of KA-induced epileptic rats, analyzed the EEG functional brain connections to explore their respective effect on the epileptic brain network, and discuss the mechanism of ultrasound neuromodulation.

View Article and Find Full Text PDF

With the development of electrical stimulation technology, especially the emergence of temporally interfering (TI) stimulation, it is necessary to discuss the influence of current frequency on stimulation intensity. Accurate skull modeling is important for transcranial current stimulation (tCS) simulation prediction because of its large role in dispersing current. In this study, we simulated different frequencies of transcranial alternating current stimulation (tACS) and TI stimulation in single-layer and layered skull model, compared the electric field via error parameters such as the relative difference measure and relative magnification factor.

View Article and Find Full Text PDF

Despite the breakthroughs in accuracy and efficiency of object detection using deep neural networks, the performance of small object detection is far from satisfactory. Gaze estimation has developed significantly due to the development of visual sensors. Combining object detection with gaze estimation can significantly improve the performance of small object detection.

View Article and Find Full Text PDF

Electronic and photochemical properties of hybrid binary silicon and germanium derived Janus monolayers.

Phys Chem Chem Phys

August 2021

State Key Laboratory of Explosion Science and Technology, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.

The electronic structures and optical properties of a novel class of hybrid binary Janus materials derived from IV-V groups were investigated using first principles calculations. The computational results demonstrated that, except for GeNAs, all the other five structures of MXY monolayers (M = Si, Ge; X, Y = N, P, As; X ≠ Y) have excellent thermal and dynamical stabilities. Janus SiNP, SiNAs, SiPAs and GeNP are semiconductors with direct band gaps spanning the range between 0.

View Article and Find Full Text PDF

This paper summarized the research status, imaging model, systems calibration, distortion correction, and panoramic expansion of panoramic vision systems, pointed out the existing problems and put forward the prospect of future research. According to the research status of panoramic vision systems, a panoramic vision system with single viewpoint of refraction and reflection is designed. The systems had the characteristics of fast acquisition, low manufacturing cost, fixed single-view imaging, integrated imaging, and automatic switching depth of field.

View Article and Find Full Text PDF

Coupling relationship between glucose and oxygen metabolisms to differentiate preclinical Alzheimer's disease and normal individuals.

Hum Brain Mapp

October 2021

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, School of Communication and Information Engineering, Shanghai University, Shanghai, China.

The discovery of preclinical Alzheimer's disease (preAD) provides a wide time window for the early intervention of AD. The coupling relationships between glucose and oxygen metabolisms from hybrid PET/MRI can provide complementary information on the brain's physiological state for preAD. In this study, we purpose to explore the change of coupling relationship among 27 normal controls (NCs), 20 preADs, and 15 cognitive impairments (CIs).

View Article and Find Full Text PDF

Bio-assembling and Bioprinting for Engineering Microvessels from the Bottom Up.

Int J Bioprint

June 2021

Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Blood vessels are essential in transporting nutrients, oxygen, metabolic wastes, and maintaining the homeostasis of the whole human body. Mass of engineered microvessels is required to deliver nutrients to the cells included in the constructed large three-dimensional (3D) functional tissues by diffusion. It is a formidable challenge to regenerate microvessels and build a microvascular network, mimicking the cellular viabilities and activities in the engineered organs with traditional or existing manufacturing techniques.

View Article and Find Full Text PDF

Recent studies have shown that the energy release capacity of Polytetrafluoroethylene (PTFE)/Al with Si, and CuO, respectively, is higher than that of PTFE/Al. PTFE/Al/Si/CuO reactive materials with four proportions of PTFE/Si were designed by the molding-sintering process to study the influence of different PTFE/Si mass ratios on energy release. A drop hammer was selected for igniting the specimens, and the high-speed camera and spectrometer systems were used to record the energy release process and the flame spectrum, respectively.

View Article and Find Full Text PDF

Pupil segmentation is critical for line-of-sight estimation based on the pupil center method. Due to noise and individual differences in human eyes, the quality of eye images often varies, making pupil segmentation difficult. In this paper, we propose a pupil segmentation method based on fuzzy clustering of distributed information, which first preprocesses the original eye image to remove features such as eyebrows and shadows and highlight the pupil area; then the Gaussian model is introduced into global distribution information to enhance the classification fuzzy affiliation for the local neighborhood, and an adaptive local window filter that fuses local spatial and intensity information is proposed to suppress the noise in the image and preserve the edge information of the pupil details.

View Article and Find Full Text PDF

Human Somatosensory Processing and Artificial Somatosensation.

Cyborg Bionic Syst

July 2021

Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China.

In the past few years, we have gained a better understanding of the information processing mechanism in the human brain, which has led to advances in artificial intelligence and humanoid robots. However, among the various sensory systems, studying the somatosensory system presents the greatest challenge. Here, we provide a comprehensive review of the human somatosensory system and its corresponding applications in artificial systems.

View Article and Find Full Text PDF

Automated Cell Mechanical Characterization by On-Chip Sequential Squeezing: From Static to Dynamic.

Langmuir

July 2021

Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Advanced Innovation Center for Intelligent Robots and Systems, and School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China.

The mechanical properties of cells are harmless biomarkers for cell identification and disease diagnosis. Although many systems have been developed to evaluate the static mechanical properties of cells for biomedical research, their robustness, effectiveness, and cost do not meet clinical requirements or the experiments with a large number of cell samples. In this paper, we propose an approach for on-chip cell mechanical characterization by analyzing the dynamic behavior of cells as they pass through multiple constrictions.

View Article and Find Full Text PDF

This paper establishes a fully automatic real-time image segmentation and recognition system for breast ultrasound intervention robots. It adopts the basic architecture of a U-shaped convolutional network (U-Net), analyses the actual application scenarios of semantic segmentation of breast ultrasound images, and adds dropout layers to the U-Net architecture to reduce the redundancy in texture details and prevent overfitting. The main innovation of this paper is proposing an expanded training approach to obtain an expanded of U-Net.

View Article and Find Full Text PDF

Organometallo-macrocycle assembled through dialumane-mediated C-H activation of pyridines.

Chem Commun (Camb)

June 2021

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China. and Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Dialumane 1 reacts with pyridines at elevated temperatures through regioselective reductive dehydrogenation of 4-H, affording a unique hexanuclear Al(iii) macrocycle [{LAl(pyridyl)}6], which represents the first dialumane-mediated C-H activation of Py and may suggest a new approach toward organometallo supra-molecules by one-pot small molecule activation and self-assembly.

View Article and Find Full Text PDF