17,818 results match your criteria: "School of Mechanical and Electrical Engineering; Machine Life and Intelligence Research Centre.[Affiliation]"
ISA Trans
January 2025
Institute of Artificial Intelligence and Future Networks, Beijing Normal University at Zhuhai, Zhuhai, China; BNU-HKBU United International College Tangjiawan, Rd. JinTong 2000#, Zhuhai, China. Electronic address:
In this paper, a novel recursive hierarchical parametric identification method based on initial value optimization is proposed for Wiener-Hammerstein systems subject to stochastic measurement noise. By transforming the traditional Wiener-Hammerstein system model into a generalized form, the system model parameters are uniquely expressed for estimation. To avoid cross-coupling between estimating block-oriented model parameters, a hierarchical identification algorithm is presented by dividing the parameter vector into two subvectors containing the coupled and uncoupled terms for estimation, respectively.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Traffic Management School, People's Public Security University of China, Beijing, 100038, China.
The takeover issue, especially the setting of the takeover time budget, is a critical factor restricting the implementation and development of conditionally automated vehicles. The general fixed takeover time budget has certain limitations, as it does not take into account the driver's non-driving behaviors. Here, we propose an intelligent takeover assistance system consisting of all-round sensing gloves, a non-driving behavior identification module, and a takeover time budget determination module.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston, MA 02115, USA.
Humans adjust their movement to changing environments effortlessly via multisensory integration of the effector's state, motor commands, and sensory feedback. It is postulated that frontoparietal (FP) networks are involved in the control of prehension, with dorsomedial (DM) and dorsolateral (DL) regions processing the reach and the grasp, respectively. This study tested (5F, 5M participants) the differential involvement of FP nodes (ventral premotor cortex - PMv, dorsal premotor cortex - PMd, anterior intraparietal sulcus - aIPS, and anterior superior parietal-occipital cortex - aSPOC) in online adjustments of reach-to-grasp coordination to mechanical perturbations that disrupted arm transport.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits, Peking University, Beijing, 100871, China.
The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.
View Article and Find Full Text PDFNano Lett
January 2025
Shanghai, China State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
Metal sulfide electrodes for sodium-ion batteries face trade-offs among high capacity, fast kinetics, and stability. The challenge lies in breaking and restoring metal-sulfur bonds and allowing rapid ionic transport. Here we explore the boundary of conversion- and intercalation-type metal sulfides to develop ideal sodium-ion storage materials.
View Article and Find Full Text PDFHeliyon
January 2025
Faculty of Mechanical Technology and Engineering, Universiti Teknikal Malaysia Melaka (UTeM), Durian Tunggal, Melaka, 76100, Malaysia.
This paper explores the electrical conductivity interphase of Ag/Epoxy composite using modified McLachlan theory and 3D finite element composite model through experimental verification. The model characteristic presents conductivity as a dynamic function influenced by particle content, particle electrical properties, electrical properties transition, and an exponent. This model was meticulously crafted, considering the intricate interplay between the polymer matrix and silver particles, the tunnelling distance between adjacent silver particles, and the interphase regions around particles.
View Article and Find Full Text PDFMater Horiz
January 2025
College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
Developing hydrogels with high conductivity and toughness a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn ions were soaked into the gel and then converted to Sn dendrites an electrochemical reaction; the excessive Sn ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel.
View Article and Find Full Text PDFChemistryOpen
January 2025
Department of Chemistry, School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India.
High-entropy alloys (HEAs), containing five or more elements in equal proportions, have recently made significant achievements in materials science due to their remarkable properties, including high toughness, excellent catalytic, thermal, and electrical conductivity, and resistance to wear and corrosion. This study focuses on a HEA composed of 23Fe-21Cr-18Ni-20Ti-18Mn, synthesized via ball milling. The alloy was treated with hydrochloric acid (HCl) to enhance its active surface area.
View Article and Find Full Text PDFNanoscale
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Liquid biopsies are expected to advance cancer management, and particularly physical cues are gaining attention for indicating tumorigenesis and metastasis. Atomic force microscopy (AFM) has become a standard and important tool for detecting the mechanical properties of single living cells, but studies of developing AFM-based methods to efficiently measure the mechanical properties of circulating tumor cells (CTCs) in liquid biopsy for clinical utility are still scarce. Herein, we present a proof-of-concept study based on the complementary combination of AFM and microfluidics, which allows label-free sorting of individual CTCs and subsequent automated AFM measurements of the mechanical properties of CTCs.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China.
The most common type of proximal humerus fracture is surgical neck fracture. The purpose of this paper is to study the mechanical mechanism and the effect of bone degeneration on humeral surgical neck fractures. The right humerus finite element models were established based on CT computed tomography.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
The high performance of two-dimensional (2D) channel membranes is generally achieved by preparing ultrathin or forming short channels with less tortuous transport through self-assembly of small flakes, demonstrating potential for highly efficient water desalination and purification, gas and ion separation, and organic solvent waste treatment. Here, we report the construction of vertical channels in graphene oxide (GO) membrane based on a substrate template with asymmetric pores. The membranes achieved water permeance of 2647 L m h bar while still maintaining an ultrahigh rejection rate of 99.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522 Japan.
Heparin concentration c in a blood extracorporeal circulation has been real-timely predicted based on the relaxation strength Δε at relaxation frequency f extracted by relaxation time distribution (RTD). The simulated extracorporeal circulation was conducted to optimize the number of Δε for the prediction of c using the porcine whole blood (WB) and low-leukocyte and -platelet blood (LLPB) under the condition of the gradual increment of c from 0 to 8 U/mL with constant flow rate and blood temperature. The experimental results show that among the three relaxation strengths Δε, Δε and Δε (in ascending order of frequency), Δε at f = 5.
View Article and Find Full Text PDFVat photopolymerization (VPP) is an additive manufacturing method that requires the design of photocurable resins to act as feedstock and binder for the printing of parts, both monolithic and composite. The design of a suitable photoresin is costly and time-consuming. The development of one formulation requires the consumption of kilograms of costly materials, weeks of printing and performance testing, as well as the need to have developers with the expertise and knowledge of the materials used, making the development process cost thousands.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
School of Mechanical Engineering, Yeungnam University, 280, Daehak-ro, Gyeongsan 38541, Republic of Korea.
Carbon nanomaterials, particularly carbon nanotubes (CNTs), are widely used as reinforcing fillers in rubber composites for advanced mechanical and electrical applications. However, the influence of rubber functionality and its interactions with CNTs remains underexplored. This study investigates electroactive elastomeric composites fabricated with CNTs in two common diene rubbers: natural rubber (NR) and acrylonitrile-butadiene rubber (NBR), each with distinct functionalities.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Silicon carbide (SiC) metal oxide semiconductor field-effect transistors (MOSFETs) are a future trend in traction inverters in electric vehicles (EVs), and their thermal safety is crucial. Temperature-sensitive electrical parameters' (TSEPs) indirect detection normally requires additional circuits, which can interfere with the system and increase costs, thereby limiting applications. Therefore, there is still a lack of cost-effective and sensorless thermal monitoring techniques.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Heime (Tianjin) Electrical Engineering Systems Co., Ltd., Tianjin 301700, China.
This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of High Performance Complex Manufacturing, Changsha 410083, China.
Local electrochemical deposition (LECD) is an innovative additive manufacturing technology capable of achieving precise deposition of metallic microstructures. This study delves into the ramifications of pivotal operational parameters-namely, the initial electrode gap, deposition voltage, and additive concentration-on the morphology of zinc microcolumns fabricated through LECD. A holistic approach integrating experimental methodologies with finite element simulations was adopted to scrutinize the influence of these variables on the microcolumns' dimensions, surface morphology, and structural integrity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Automation, Tsinghua University, Beijing 100084, China.
Squatting is a fundamental and crucial movement, often employed as a basic test during robot commissioning, and it plays a significant role in some service industries and in cases when robots perform high-dynamic movements like jumping. Therefore, achieving continuous and precise squatting actions is of great importance for the future development of humanoid robots. In this paper, we apply three-particle model predictive control (TP-MPC) combined with weight-based whole-body control (WBC) to a humanoid robot.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
For those piezoelectric materials that operate under high-power conditions, the piezoelectric and dielectric properties obtained under small signal conditions cannot be directly applied to high-power transducers. There are three mainstream high-power characterization methods: the constant voltage method, the constant current method, and the transient method. In this study, we developed and verified a combined impedance method that integrated the advantages of the constant voltage and current methods, along with an improved transient method, for high-power testing of PZT-5H piezoelectric ceramics.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Green Environmental Protection Industry Co., Ltd., Guiyang 551109, China.
Rice husk ash is a kind of biomass material. Its main component is silicon dioxide, with a content of up to 80%. It has high pozzolanic activity and can react with hydroxide in cement.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Mechanical and Electrical Engineering Department, Polish Naval Academy, 81-103 Gdynia, Poland.
This study presents the optimization of the friction stir welding (FSW) process using polynomial regression to predict the maximum tensile load (MTL) of welded joints. The experimental design included varying spindle speeds from 600 to 2200 rpm and welding speeds from 100 to 350 mm/min over 28 experimental points. The resulting MTL values ranged from 1912 to 15,336 N.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Mechanical and Electrical Engineering, Hainan University, Haikou 570228, China.
The phononic crystals composed of soft materials have received extensive attention owing to the extraordinary behavior when undergoing large deformations, making it possible to provide tunable band gaps actively. However, the inverse designs of them mainly rely on the gradient-driven or gradient-free optimization schemes, which require sensitivity analysis or cause time-consuming, lacking intelligence and flexibility. To this end, a deep learning-based framework composed of a conditional variational autoencoder and multilayer perceptron is proposed to discover the mapping relation from the band gaps to the topology layout applied with prestress.
View Article and Find Full Text PDF