353 results match your criteria: "School of Material Science and Chemical Engineering[Affiliation]"

Construction of CuMoS/ZnO Heterostructures and Mechanism of Photocatalytic Hydrogen Production.

Langmuir

January 2025

Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.

Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.

View Article and Find Full Text PDF

Lanthanide-polyoxometalate-based self-erasing luminescent hydrogels with time-dependent and resilient properties for advanced information encryption.

Mater Horiz

January 2025

Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China.

In such an era of information explosion, improving the level of information security is still a challenging task. Self-erasing luminescent hydrogels are becoming ideal candidates for improving the level of information security with simple encryption and decryption methods. Herein, a lanthanide-polyoxometalate-based self-erasing luminescent hydrogel with time-dependent and resilient properties was constructed through a covalent crosslinked network constructed with polyacrylamide and a non-covalent crosslinked network constructed with [2-(methacryloyloxy)ethyl]trimethyl ammonium chloride/NaDyWO, along with doping urease.

View Article and Find Full Text PDF

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

Cross-linked polyethylene (XLPE) is applied in most advanced high-voltage direct-current (HVDC) power cable insulations, which are produced via dicumyl peroxide (DCP) technology. The electrical conductivity of insulation material can be increased by cross-linking byproducts from the DCP process. Hence, currently much attention is being paid to a new process to produce cross-linking byproduct-free XLPE.

View Article and Find Full Text PDF

The modern world is facing the issue of emerging pollutants for its sustainable development. We report a detailed study on the abatement of ciprofloxacin (CIP) by BeO nanocage. Five different geometries of BeO nanocage with CIP i.

View Article and Find Full Text PDF

Epinephrine (Ep) is an important neurotransmitter, which plays an important role in the nervous system and glycogen metabolism of living organisms. Hence, a novel NCQDs/FeCoFe-PBA composite with FeCoFe-Prussian blue analogues (PBA) as the core and nitrogen-doped carbon quantum dots (NCQDs) as the shell was constructed by a one-pot hydrothermal method, and it was used for the efficient detection of Ep. As a good electroactive material, NCQDs in the composite not only improved the weak conductivity of FeCoFe-PBA, but also limited the self-aggregation of FeCoFe-PBA, and formed a uniform shell on FeCoFe-PBA.

View Article and Find Full Text PDF

Integrating Chemoselective Labeling and Laser-Cleavable Mass Tagging for Determination of Sialic Acids in Glycoconjugates.

Anal Chem

January 2025

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

Sialic acids are the terminal units of glycans in glycoproteins or glycolipids. The determination of sialic acids in glycoconjugates is crucial since they regulate essential biological functions and have a significant nutritional value. To achieve a specific and high-throughput in situ determination of sialic acids in glycoconjugates, a laser-desorption/ionization mass spectrometry (LDI-MS)-based strategy is reported by integrating chemoselective labeling and laser-cleavable mass tagging.

View Article and Find Full Text PDF

In-depth site-specific glycoproteomic analysis reveals ER-resident protein PDI regulating wheat yellow mosaic virus infection.

Int J Biol Macromol

December 2024

Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass Spectrometry and Clinical Application, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; Zhenhai Institute of Mass Spectrometry, Ningbo 315211, China. Electronic address:

N-glycosylation is crucial in the process of wheat yellow mosaic virus (WYMV) infection, but changes in site-specific N-glycosylation of proteins during WYMV infection have not been well studied. In this study, we employed an intact glycopeptide approach to analyze mock- and WYMV-infected wheat plants. We found that most glycoproteins have N-glycans containing paucimannose or complex/hybrid chains.

View Article and Find Full Text PDF

Endophthalmitis is a serious infectious eye disease that causes permanent vision loss. This study developed a method for rapid identification and drug resistance analysis of pathogens in vitreous humor. After short-term rapid culture, 30 Staphylococcus aureus isolates were enriched and purified from the vitreous humor using Fc-MBL@FeO, and then identified by MALDI-TOF MS.

View Article and Find Full Text PDF

The rapid development of modern industries is accompanied with the aggravating water heavy metal pollution, which poses a potential threat to the aquatic environment and the health of local populations. As an efficient and economical adsorbent, biochar demonstrates the adsorption capacity for heavy metal ions and its adsorption capacity is significantly enhanced after modification. Therefore, biochar can effectively mitigate environmental pollution.

View Article and Find Full Text PDF

Preparation of a titanium-functionalized polymeric material rich in hydrophilic groups for phosphoproteome and glycoproteome analyses in serum.

Analyst

January 2025

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.

The analysis of protein phosphorylation and glycosylation is critical for investigating disease development. In this work, 1,2-epoxy-5-hexene and ,-methylenebisacrylamide were polymerized with vinyl phosphate to produce a polymer (denoted as PVME), which contained a variety of hydrophilic groups. The material's hydrophilicity was further enhanced by a ring-opening reaction with cysteine (the product was denoted as Cys-PVEM).

View Article and Find Full Text PDF

Microchip capillary electrophoresis-mass spectrometry for high-throughput simultaneous analysis of B-complex vitamins.

J Chromatogr A

January 2025

School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Key Laboratory of Advanced Mass spectrometry and Molecular Analysis of Zhejiang Province, Ningbo University, Ningbo, 315211, China.

B-complex vitamins are essential micronutrients that maintaining health, and provide (individually/simultaneously) many important biological actions in organism. Therefore, sensitive, reliable analytical method to determine B-complex vitamins simultaneously in actual samples is significant. Conventional analytical methods for vitamins analysis are usually labor-intensive, time-consuming and mostly do not allow the simultaneous determination.

View Article and Find Full Text PDF

Benzotrithiophene-Based Covalent Organic Frameworks with Rhenium Modified for Artificial Photosynthetic CO Reduction.

Inorg Chem

December 2024

Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.

Although covalent organic framework (COF)-based photocatalysts for CO reduction reaction has been widely reported, there are still some problems such as poor visible-light absorption and low activity to realize the overall reaction of CO reduction by the artificial photosynthesis strategy. Herein, anchoring the Re carbonyl complex Re(CO)Cl in a benzotrithiophene-based COF has been synthesized for artificial photosynthetic CO reduction. The photocatalytic results demonstrate that BTT-bpy-COF-Re exhibits the highest CORR activity, achieving a rate of 110.

View Article and Find Full Text PDF

Task-Specific Design of a Porous Aromatic Framework as an Ultrastable Platform for Enantioselective Organocatalysis.

Chemistry

December 2024

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.

A hydroxyl-tagged porous aromatic framework PAF-NBU2-OH was task-specifically designed and successfully synthesized targeted toward immobilizing chiral catalysts. Using proline-type compound as model chiral organocatalyst, PAF-NBU2-OH was used as a platform to covalently link proline-type group. The obtained PAF-immobilized organocatalyst PAF-NBU2-OPro featured high chemical stability in different solvents even under very harsh conditions.

View Article and Find Full Text PDF

Deep learning-assisted single-atom detection of copper ions by combining click chemistry and fast scan voltammetry.

Nat Commun

November 2024

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.

Cell ion channels, cell proliferation and metastasis, and many other life activities are inseparable from the regulation of trace or even single copper ion (Cu and/or Cu). In this work, an electrochemical sensor for sensitive quantitative detection of 0.4-4 amol L copper ions is developed by adopting: (1) copper ions catalyzing the click-chemistry reaction to capture numerous signal units; (2) special adsorption assembly method of signal units to ensure signal generation efficiency; and (3) fast scan voltammetry at 400 V s to enhance signal intensity.

View Article and Find Full Text PDF

Magnetic poly(phages) encoded probes-based dual-mode assay for rapid determination of live Escherichia coli and Hafnia paralvei based on microfluidic chip and ATP bioluminescence meter.

Mikrochim Acta

November 2024

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.

A dual-mode assay was developed for screening and detecting live Escherichia coli (E. coli) and Hafnia paralvei (H. paralvei) (as two typical pathogens in aquatic environments) based on magnetic poly(phages) encoded probes (MPEP).

View Article and Find Full Text PDF

Cu Pillar Electroplating Using a Synthetic Polyquaterntum Leveler and Its Coupling Effect on SAC305/Cu Solder Joint Voiding.

Materials (Basel)

November 2024

Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

With the advancement of high-integration and high-density interconnection in chip manufacturing and packaging, Cu bumping technology in wafer- and panel- level packaging is developed to micrometer-sized structures and pitches to accommodate increased I/O numbers on high-end integrated circuits. Driven by this industrial demand, significant efforts have been dedicated to Cu electroplating techniques for improved pillar shape control and solder joint reliability, which substantially depend on additive formulations and electroplating parameters that regulate the growth morphology, crystal structure, and impurity incorporation in the process of electrodeposition. It is necessary to investigate the effect of an additive on Cu pillar electrodeposition, and to explore the Kirkendall voids formed during the reflowing process, which may result from the additive-induced impurity in the electrodeposited Cu pillars.

View Article and Find Full Text PDF

Trifluralin (TRL) is an effective and persistent herbicide, but its extensive and prolonged use has increasingly posed ecological and environmental health risks, making the development of convenient and rapid TRL detection methods essential for environmental protection and food safety. In the present research, a novel fluorescent probe was designed and developed, Zn-χ-L, for the rapid and selective detection of TRL in complex environments. The sensor demonstrates excellent sensitivity and stability, while also exhibiting significant resistance to interference from other pesticides and metal ions.

View Article and Find Full Text PDF

BiTe-based alloys have historically dominated the commercial sector of near-ambient-temperature thermoelectric technology. However, the massive intrinsic defects form the "donor-like" effect and affect the transport properties of BiSbTe significantly. Here, it is demonstrated that the over-stoichiometric Sb fills Te vacancies and weakens the defect scattering, resulting in a desirable carrier mobility.

View Article and Find Full Text PDF

Sabatier Principle-Driven Single-Atom Coordination Engineering for Enhanced Fenton-Like Catalysis.

Small

January 2025

Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Single-atom catalysts (SACs) are widely employed in Fenton-like catalysis, yet guidelines for their high-performance design remain elusive. The Sabatier principle provides guidance for the ideal catalyst with the highest activity. Herein, the study meticulously engineered a series of SACs featuring a broad distribution of d-band center through single-atom coordination engineering, facilitating a comprehensive exploration of the Sabatier relationship in Fenton-like catalysis.

View Article and Find Full Text PDF

It is proven through transmission electron microscope (TEM) analysis that solar sensitizer CuSnS (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO layer to form CTS/TiO, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

A composite material based on CuFe-ZIF-derived CuFeO nano-microspheres grown in situ and well-ordered on carbon sheets (CS) was prepared and applied for highly effective determination of bisphenol A (BPA). The composite material possessed inherently high redox activity due to the presence of both Cu and Fe ions with various oxidation states (Cu²⁺/Cu⁺ and Fe³⁺/Fe²⁺), high specific surface area, uniform distribution of Cu and Fe ions, and a robust framework imparted by its precursor CuFe-ZIF. This led to increased active sites for electrochemical reactions, improved electron transfer efficiency, and structural integrity during electrochemical cycling.

View Article and Find Full Text PDF

Wearable Patch Biosensor through Electrothermal Film-Stimulated Sweat Secretion for Continuous Sweat Glucose Analysis at Rest.

Anal Chem

November 2024

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

Wearable patch biosensors for noninvasive and continuous diabetes management through sweat glucose analysis present a promising prospect. However, how to obtain sweat samples safely and effectively remains a huge challenge, especially in a resting state. In this work, we propose an innovative wearable patch biosensor through a heat-stimulated approach for sweat collection.

View Article and Find Full Text PDF

Theoretical Investigation of Single-, Double-, and Triple- -block Metals Anchored on g-CN Monolayer for Oxygen Electrocatalysis.

J Phys Chem Lett

November 2024

Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

The design and development of highly active non-noble metal electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are crucial for metal-air batteries. In this work, the electrocatalytic performance of different -block metal (PM = Sn, Sb, Pb and Bi) atoms embedded in the g-CN monolayer (PM@g-CN, = 1-3) for the OER and ORR was systematically investigated by density functional theory (DFT). The strong interaction between PM atoms and g-CN substrates indicates the good stability of PM@g-CN catalysts.

View Article and Find Full Text PDF

Facile preparation of titanium functionalized cross-linked chitosan polymer for phosphoproteome analysis in serum.

J Chromatogr B Analyt Technol Biomed Life Sci

October 2024

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China. Electronic address:

Efficient phosphopeptide enrichment is extremely important for proteomics research. In this work, chitosan (CTs), 2,3-dihydroxyterephthalaldehyde (2,3-DHA), and carbohydrazide (CHZ) are polymerized to generate the polymer (DHA-CTs-CHZ), and then the polymer (DHA-CTs-CHZ) is coupled with a significant number of titanium ions to enrich phosphopeptides. The material exhibits high selectivity (5000:1 M ratio of BSA to β-casein), sensitivity (0.

View Article and Find Full Text PDF