5 results match your criteria: "School of Life Sciences University of Essex Colchester UK.[Affiliation]"

Urbanisation has reduced the abundance and diversity of many taxonomic groups, and the effects may be more pronounced on islands, which have a smaller regional species pool to compensate. Green spaces within urban environments may help to safeguard wildlife assemblages, and the associated habitat heterogeneity can even increase species diversity. Here, total abundance and species diversity of butterflies, birds, and vegetation at nine rural and nine urban locations were quantified on Lipsi Island, Greece.

View Article and Find Full Text PDF

Chinook salmon () display remarkable life history diversity, underpinning their ability to adapt to environmental change. Maintaining life history diversity is vital to the resilience and stability of Chinook salmon metapopulations, particularly under changing climates. However, the conditions that promote life history diversity are rapidly disappearing, as anthropogenic forces promote homogenization of habitats and genetic lineages.

View Article and Find Full Text PDF

Phenotypic plasticity is predicted to evolve in more variable environments, conferring an advantage on individual lifetime fitness. It is less clear what the potential consequences of that plasticity will have on ecological population dynamics. Here, we use an invertebrate model system to examine the effects of environmental variation (resource availability) on the evolution of phenotypic plasticity in two life history traits-age and size at maturation-in long-running, experimental density-dependent environments.

View Article and Find Full Text PDF

Low birthweight and reduced height gain during infancy (stunting) may arise at least in part from adverse early life environments that trigger epigenetic reprogramming that may favor survival. We examined differential DNA methylation patterns using targeted methyl sequencing of regions regulating gene activity in groups of rural Gambian infants: (a) low and high birthweight (DNA from cord blood ( = 16 and  = 20, respectively), from placental trophoblast tissue ( = 21 and  = 20, respectively), and DNA from peripheral blood collected from infants at 12 months of age ( = 23 and  = 17, respectively)), and, (b) the top 10% showing rapid postnatal length gain (high,  = 20) and the bottom 10% showing slow postnatal length gain (low,  = 20) based on z score change between birth and 12 months of age (LAZ) (DNA from peripheral blood collected from infants at 12 months of age). Using BiSeq analysis to identify significant methylation marks, for birthweight, four differentially methylated regions (DMRs) were identified in trophoblast DNA, compared to 68 DMRs in cord blood DNA, and 54 DMRs in 12-month peripheral blood DNA.

View Article and Find Full Text PDF

Rising atmospheric carbon dioxide levels are driving decreases in aquatic pH. As a result, there has been a surge in the number of studies examining the impact of acidification on aquatic fauna over the past decade. Thus far, both positive and negative impacts on the growth of fish have been reported, creating a disparity in results.

View Article and Find Full Text PDF