5 results match your criteria: "School of Environment and Natural Resources The Ohio State University Columbus OH USA.[Affiliation]"

Climate change is expected to systematically alter the distribution and population dynamics of species around the world. The effects are expected to be particularly strong at high latitudes and elevations, and for ectothermic species with small ranges and limited movement potential, such as salamanders in the southern Appalachian Mountains. In this study, we sought to establish baseline abundance estimates for plethodontid salamanders (family: Plethodontidae) over an elevational gradient in Great Smoky Mountains National Park.

View Article and Find Full Text PDF

Due to a long running research bias toward the breeding season, there are major gaps in knowledge on the basic nonbreeding ecology of many species, preventing a full-annual cycle focus in ecology and conservation. Exacerbating this problem is the fact that many species are extremely difficult to detect outside of breeding. Here, we demonstrate a partial solution to this problem by using archival GPS tags to examine the overwintering ecology of a migratory nocturnal bird, the eastern whip-poor-will ().

View Article and Find Full Text PDF

Climate change is predicted to impact tropical mangrove forests due to decreased rainfall, sea-level rise, and increased seasonality of flooding. Such changes are likely to influence habitat quality for migratory songbirds occupying mangrove wetlands during the tropical dry season. Overwintering habitat quality is known to be associated with fitness in migratory songbirds, yet studies have focused primarily on territorial species.

View Article and Find Full Text PDF

Species distribution models (SDMs) provide useful information about potential presence or absence, and environmental conditions suitable for a species; and high-resolution models across large extents are desirable. A primary feature of SDMs is the underlying spatial resolution, which can be chosen for many reasons, though we propose that a hybrid lattice, in which grid cell sizes vary with the density of forest inventory plots, provides benefits over uniform grids. We examine how the spatial grain size affected overall model performance for the Random Forest-based SDM, DISTRIB, which was updated with recent forest inventories, climate, and soil data, and used a hybrid lattice derived from inventory densities.

View Article and Find Full Text PDF

Understanding metapopulation dynamics requires knowledge about local population dynamics and movement in both space and time. Most genetic metapopulation studies use one or two study species across the same landscape to infer population dynamics; however, using multiple co-occurring species allows for testing of hypotheses related to different life history strategies. We used genetic data to study dispersal, as measured by gene flow, in three ambystomatid salamanders (, , and ) and the Central Newt () on the same landscape in Missouri, USA.

View Article and Find Full Text PDF