2,440 results match your criteria: "School of Engineering Sciences[Affiliation]"

Unveiling the role of BON domain-containing proteins in antibiotic resistance.

Front Microbiol

January 2025

Department of Materials, Loughborough University, Loughborough, United Kingdom.

The alarming rise of antibiotic-resistant Gram-negative bacteria poses a global health crisis. Their unique outer membrane restricts antibiotic access. While diffusion porins are well-studied, the role of BON domain-containing proteins (BDCPs) in resistance remains unexplored.

View Article and Find Full Text PDF

Surface plasmons offer a promising avenue in the pursuit of swift and localized manipulation of magnetism for advanced magnetic storage and information processing technology. However, observing and understanding spatiotemporal interactions between surface plasmons and spins remains challenging, hindering optimal optical control of magnetism. Here, we demonstrate the spatiotemporal observation of patterned ultrafast demagnetization dynamics in permalloy mediated by propagating surface plasmon polaritons with sub-picosecond time- and sub-μm spatial- scales by employing Lorentz ultrafast electron microscopy combined with excitation through transient optical gratings.

View Article and Find Full Text PDF

Developing high-activity and long-term stable electrocatalysts for electrochemical CO2 reduction reaction (eCO2RR) to valuable products is still a challenge. An in-depth understanding of reaction mechanisms and the structure-function relationship is required for the development of an advanced catalytic eCO2RR system. Herein, a coordination polymer of indium(III) and benzenehexathiol (BHT) was developed as an electrocatalyst (In-BHT) for eCO2RR to HCOO-, which displayed an outstanding catalytic performance over the entire pH range.

View Article and Find Full Text PDF

Spin transport properties in a topological insulator sandwiched between two-dimensional magnetic layers.

Sci Rep

January 2025

Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, SE-10691, Stockholm, Sweden.

Non-trivial band topology along with magnetism leads to different novel quantum phases. When time-reversal symmetry is broken in three-dimensional topological insulators (TIs) through, e.g.

View Article and Find Full Text PDF

Background And Objective: Coughing events are eruptive sources of virus-laden droplets/droplet nuclei. These increase the risk of infection in susceptible individuals during airborne transmission. The oral cavity functions as an exit route for exhaled droplets.

View Article and Find Full Text PDF

The PWWP domain is a conserved motif unique to eukaryotes, playing a critical role in various cellular processes. Proteins containing the PWWP domain are typically found in chromatin, where they bind to DNA and histones in nucleosomes, facilitating chromatin-associated functions. Among these proteins, PWWP-domain containing proteins 2A and 2B (PWWP2A and PWWP2B), identified during the H2A interactome analysis, are DNA methyltransferase-related proteins, that are structurally disordered, except for their PWWP domain.

View Article and Find Full Text PDF

Skin cancer is prevalent worldwide,surpassing all other forms of cancer and it does not respond effectively to conventional formulations. Treatment of skin cancer further require deeper permeation into the skin. Therefore, researchers are working on different types of nanoformulations for delivering therapeutic agents to the site of action.

View Article and Find Full Text PDF

: We aimed to predict patient-specific rupture risks and growth behaviors in abdominal aortic aneurysm (AAA) patients using biomechanical evaluation with finite element analysis to establish an additional AAA repair threshold besides diameter and sex. : A total of 1219 patients treated between 2005 and 2024 (conservative and repaired AAAs) were screened for a pseudo-prospective single-center study. A total of 15 ruptured (rAAA) vs.

View Article and Find Full Text PDF

Machine Learning Algorithm-Based Prediction of Diabetes Among Female Population Using PIMA Dataset.

Healthcare (Basel)

December 2024

Department of Computer Science, School of Arts, Humanities and Social Sciences, University of Roehampton, London SW15 5PH, UK.

: Diabetes is a metabolic disorder characterized by increased blood sugar levels. Early detection of diabetes could help individuals to manage and delay the progression of this disorder effectively. Machine learning (ML) methods are important in forecasting the progression and diagnosis of different medical problems with better accuracy.

View Article and Find Full Text PDF

Influence of irrigation with oxygen plasma treated metal contaminated water on plant growth.

Sci Rep

January 2025

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan.

This study aimed to evaluate the effects of plasma treated metal contaminated water, used for irrigation, on plant growth. Zinc (Zn) is a commonly used metal that can enter the environment through industrial processes. It may be released as particles into the atmosphere or discharged as wastewater into waterways or the ground.

View Article and Find Full Text PDF

Wood and Cellulose: the Most Sustainable Advanced Materials for Past, Present, and Future Civilizations.

Adv Mater

January 2025

Department of Fiber and Polymer Technology, School of Engineering Sciences in Chemistry Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.

Wood, with its constituent building block cellulose, is by far the most common biomaterial on the planet and has been the most important material used by humans to establish civilization. If there is one single biomaterial that should be studied and used by materials scientists across disciplines to achieve a sustainable future, it is cellulose. This perspective provides insights for the general materials science community about the unique properties of wood and cellulose and how they may be used in advanced sustainable materials to make a substantial societal impact.

View Article and Find Full Text PDF

Factors influencing surimi gelling properties and natural additive-based gel fortification strategies: A review.

Compr Rev Food Sci Food Saf

January 2025

Aquatic Products Processing Factory of China National Zhoushan Marine Fisheries Company, Zhoushan, China.

Gelation and gel properties are crucial to surimi-based seafood products, and many factors significantly influence surimi gel quality. Although physical and chemical modifications can improve surimi gel performance, challenges such as high cost, difficulties in industrialization and environmental pollution pose significant barriers to their practicality. Natural additives offer a promising alternative by reinforcing and improving the characteristics of surimi gel through mechanisms such as protein conformational transformation, protein denaturation, and altered chemical forces.

View Article and Find Full Text PDF

Sn-carbon nanocomposite anode for all-solid-state chloride-ion batteries operating at room temperature.

Chem Commun (Camb)

January 2025

Department of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.

All-solid-state chloride-ion batteries promise high theoretical energy density and room-temperature operation. However, conventional Sn anodes suffer from low material utilization attributed to large particle size and volume expansion. Here, nano-sized Sn particles in an N-doped carbon framework are used as an anode, resulting in ∼12% higher capacity compared to conventional Sn, due to improved Sn utilization and suppression of volume expansion.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) exhibit unique properties and potential applications when reduced to one-dimensional (1D) nanoribbons (NRs), owing to quantum confinement and high edge densities. However, effective growth methods for self-aligned TMD NRs are still lacking. We demonstrate a versatile approach for lattice-guided growth of dense, aligned MoS NR arrays via chemical vapor deposition (CVD) on anisotropic sapphire substrates, without tailored surface steps.

View Article and Find Full Text PDF

Plasmon-Enhanced Fluorescence of Single Extracellular Vesicles Captured in Arrayed Aluminum Nanoholes.

ACS Omega

December 2024

Division of Solid-State Electronics, Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, SE-751 03 Uppsala, Sweden.

Extracellular vesicles (EVs) are nanoparticles encapsulated with a lipid bilayer, and they constitute an excellent source of biomarkers for multiple diseases. However, the heterogeneity in their molecular compositions constitutes a major challenge for their recognition and profiling, thereby limiting their application as an effective biomarker. A single-EV analysis technique is crucial to both the discovery and the detection of EV subpopulations that carry disease-specific signatures.

View Article and Find Full Text PDF

SegRap2023: A benchmark of organs-at-risk and gross tumor volume Segmentation for Radiotherapy Planning of Nasopharyngeal Carcinoma.

Med Image Anal

January 2025

School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu, China; Shanghai Artificial Intelligence Laboratory, Shanghai, China. Electronic address:

Radiation therapy is a primary and effective treatment strategy for NasoPharyngeal Carcinoma (NPC). The precise delineation of Gross Tumor Volumes (GTVs) and Organs-At-Risk (OARs) is crucial in radiation treatment, directly impacting patient prognosis. Despite that deep learning has achieved remarkable performance on various medical image segmentation tasks, its performance on OARs and GTVs of NPC is still limited, and high-quality benchmark datasets on this task are highly desirable for model development and evaluation.

View Article and Find Full Text PDF

Neural network emulator for atmospheric chemical ODE.

Neural Netw

January 2025

School of Engineering Sciences, Lappeenranta-Lahti University of Technology LUT, Lahti, 15110, Finland; Atmospheric Modelling Centre Lahti, Lahti University Campus, Lahti, 15140, Finland; Institute for Atmospheric and Earth System Research (INAR), The University of Helsinki, Helsinki, 00014, Finland.

Article Synopsis
  • Modelling atmospheric chemistry is complicated and involves intensive computations; however, the proposed ChemNNE uses Deep Neural Networks to quickly simulate chemical concentrations by treating them as time-dependent equations.
  • This emulator employs an attention-based mechanism, sinusoidal time embedding for capturing periodic patterns, and a Fourier neural operator to improve efficiency and handle complex behaviors in the chemical processes.
  • The model is trained with three physics-informed loss functions to adhere to conservation laws and reaction rates, and it is validated using a large-scale dataset that sets a benchmark for accuracy and speed in future research.
View Article and Find Full Text PDF

Tracking the correlation between spintronic structure and oxygen evolution reaction mechanism of cobalt-ruthenium-based electrocatalyst.

Nat Commun

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China.

Regulating the spintronic structure of electrocatalysts can improve the oxygen evolution reaction performance efficiently. Nonetheless, the effects of tuning the spintronic structure for the oxygen evolution reaction mechanisms have rarely been discussed. Here, we show a ruthenium-cobalt-tin oxide with optimized spintronic structure due to the quantum spin interaction of Ru and Co.

View Article and Find Full Text PDF

Nano FTIR spectroscopy of liquid water in the -OH stretching region.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 29, SE-100 44 Stockholm, Sweden. Electronic address:

Nano-FTIR spectroscopy is a technique where atomic force microscopy (AFM) and infrared (IR) spectroscopy are combined to obtain chemical information with a lateral resolution of some tens of nm. It has been used to study numerous solid surfaces and recently also liquids including water have been examined by separating the liquid from the AFM tip by a thin lid. However, although the water stretching vibrations are significantly more intense than the bending vibration in conventional IR spectroscopy, only the bending vibration has been observed in nano-FTIR spectroscopy so far.

View Article and Find Full Text PDF

An automatic code generated C++/HIP/CUDA implementation of the (auxiliary) Fock, or Kohn-Sham, matrix construction for execution in GPU-accelerated hardware environments is presented. The module is developed as part of the quantum chemistry software package VeloxChem, employing localized Gaussian atomic orbitals. The performance and scaling characteristics are analyzed in view of the specific requirements for self-consistent field optimization and response theory calculations.

View Article and Find Full Text PDF

China's "14th Five-Year Plan" proposes the construction of a "Digital China," posing the challenge of digital transformation to coal mining enterprises. It is critical to compare the effectiveness of investing in digital devices with that of human capital. This study establishes a structural equation model based on the 'regulation-situation-behavior' theoretical framework.

View Article and Find Full Text PDF
Article Synopsis
  • Safe and Sustainable by Design (SSbD) is a new regulatory approach aimed at guiding the development of chemicals and materials, recommended by the European Commission with a focus on a two-stage framework.
  • The SSbD process involves setting principles for redesigning materials and assessing their safety and sustainability, but its effectiveness for advanced materials like TiCT MXenes still needs further exploration.
  • Research on TiCT MXenes indicates they are safe and sustainable under the SSbD framework, but more studies are required on their long-term effects and the eco-friendly production of titanium, as well as guidance on evaluating the relevant evidence for SSbD assessments.
View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

Article Synopsis
  • The study focused on creating eco-friendly multifunctional nanocellulose hybrid films for applications in packaging and photovoltaics, using varying ratios of cellulose nanocrystals and carboxymethylated cellulose nanofibrils.
  • Hybrid films incorporating montmorillonite clay improved structural integrity, but increased brittleness was noted with higher amounts of CNF and MTM.
  • The films exhibited good light transmittance and color stability under sunlight, highlighting their potential for diverse applications, particularly in optoelectronics and sustainable packaging.
View Article and Find Full Text PDF

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF