2,421 results match your criteria: "School of Engineering Sciences[Affiliation]"

Tracking the correlation between spintronic structure and oxygen evolution reaction mechanism of cobalt-ruthenium-based electrocatalyst.

Nat Commun

January 2025

State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China.

Regulating the spintronic structure of electrocatalysts can improve the oxygen evolution reaction performance efficiently. Nonetheless, the effects of tuning the spintronic structure for the oxygen evolution reaction mechanisms have rarely been discussed. Here, we show a ruthenium-cobalt-tin oxide with optimized spintronic structure due to the quantum spin interaction of Ru and Co.

View Article and Find Full Text PDF

Nano FTIR spectroscopy of liquid water in the -OH stretching region.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 29, SE-100 44 Stockholm, Sweden. Electronic address:

Nano-FTIR spectroscopy is a technique where atomic force microscopy (AFM) and infrared (IR) spectroscopy are combined to obtain chemical information with a lateral resolution of some tens of nm. It has been used to study numerous solid surfaces and recently also liquids including water have been examined by separating the liquid from the AFM tip by a thin lid. However, although the water stretching vibrations are significantly more intense than the bending vibration in conventional IR spectroscopy, only the bending vibration has been observed in nano-FTIR spectroscopy so far.

View Article and Find Full Text PDF

An automatic code generated C++/HIP/CUDA implementation of the (auxiliary) Fock, or Kohn-Sham, matrix construction for execution in GPU-accelerated hardware environments is presented. The module is developed as part of the quantum chemistry software package VeloxChem, employing localized Gaussian atomic orbitals. The performance and scaling characteristics are analyzed in view of the specific requirements for self-consistent field optimization and response theory calculations.

View Article and Find Full Text PDF

China's "14th Five-Year Plan" proposes the construction of a "Digital China," posing the challenge of digital transformation to coal mining enterprises. It is critical to compare the effectiveness of investing in digital devices with that of human capital. This study establishes a structural equation model based on the 'regulation-situation-behavior' theoretical framework.

View Article and Find Full Text PDF
Article Synopsis
  • Safe and Sustainable by Design (SSbD) is a new regulatory approach aimed at guiding the development of chemicals and materials, recommended by the European Commission with a focus on a two-stage framework.
  • The SSbD process involves setting principles for redesigning materials and assessing their safety and sustainability, but its effectiveness for advanced materials like TiCT MXenes still needs further exploration.
  • Research on TiCT MXenes indicates they are safe and sustainable under the SSbD framework, but more studies are required on their long-term effects and the eco-friendly production of titanium, as well as guidance on evaluating the relevant evidence for SSbD assessments.
View Article and Find Full Text PDF

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

Article Synopsis
  • The study focused on creating eco-friendly multifunctional nanocellulose hybrid films for applications in packaging and photovoltaics, using varying ratios of cellulose nanocrystals and carboxymethylated cellulose nanofibrils.
  • Hybrid films incorporating montmorillonite clay improved structural integrity, but increased brittleness was noted with higher amounts of CNF and MTM.
  • The films exhibited good light transmittance and color stability under sunlight, highlighting their potential for diverse applications, particularly in optoelectronics and sustainable packaging.
View Article and Find Full Text PDF

Oxygenated VOC Detection Using SnO Nanoparticles with Uniformly Dispersed BiO.

Nanomaterials (Basel)

December 2024

Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga 816-8580, Fukuoka, Japan.

BiO particles are introduced as foreign additives onto SnO nanoparticles (NPs) surfaces for the efficient detection of oxygenated volatile organic compounds (VOCs). BiO-loaded SnO materials are prepared via the impregnation method followed by calcination treatment. The abundant BiO/SnO interfaces are constructed by the uniform dispersion of BiO particles on the SnO surface.

View Article and Find Full Text PDF

Ectoine, an osmolyte produced by various microorganisms, has numerous commercial applications. Vreelandella boliviensis (formerly called Halomonas boliviensis) generates high ectoine concentrations, i.e.

View Article and Find Full Text PDF

Enhancing Electrochemical CO Reduction via Redox Non-Innocent Spheres in Copper-Coordinated Covalent Organic Frameworks.

Small

December 2024

State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China.

Significant efforts have been dedicated to the development of highly efficient electrocatalysts for electrochemical CO reduction reactions (eCORR). The outer coordination spheres of catalytic centers may play a pivotal role in the reaction pathway and kinetics for eCORR. Herein, three single copper sites coordinated Aza-fused conjugated organic frameworks (Aza-COFs-Cu) with different outer coordination spheres around Cu sites are designed.

View Article and Find Full Text PDF

Discovery and biological evaluation of potent 2-trifluoromethyl acrylamide warhead-containing inhibitors of protein disulfide isomerase.

Eur J Med Chem

February 2025

Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; School of Pharmacy, Taipei Medical University, Taipei, Taiwan. Electronic address:

Protein disulfide isomerase (PDI) regulates multiple protein functions by catalyzing the oxidation, reduction, and isomerization of disulfide bonds. The enzyme is considered a potential target for treating thrombosis. We previously developed a potent PDI inhibitor, CPD, which contains the propiolamide as a warhead targeting cysteine residue in PDI.

View Article and Find Full Text PDF

Environmental concerns on water-soluble and biodegradable plastics and their applications - A review.

Sci Total Environ

December 2024

Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.

Water-soluble polymers are materials rapidly growing in volume and in number of materials and applications. Examples include synthetic plastics such as polyacrylamide, polyacrylic acid, polyethylene glycol, polyethylene oxide and polyvinyl alcohol, with applications ranging from cosmetics and paints to water purification, pharmaceutics and food packaging. Despite their abundance, their environmental concerns (e.

View Article and Find Full Text PDF

Transparent wood composites provide new functionalities through active additives distributed at the nanoscale. Scalable nanotechnology includes processing where nanoparticles and molecules are brought into the dense wood cell wall. A novel cell wall swelling step through green chemistry is therefore investigated.

View Article and Find Full Text PDF

A comprehensive understanding of chemical interactions at the surface of hair represents an important area of research within the cosmetic industry and is essential to obtain new products that exhibit both performance and sustainability. This paper aims at contributing to this research by applying a combination of surface techniques (neutron reflectometry, quartz-crystal microbalance and atomic force microscopy) to study adsorption of surface active ingredients onto hair-mimetic surfaces. The surface of hair is not homogeneous due to chemical and physical damage, and this work focuses on partly damaged hair models, in which both hydrophobic and charged moieties are present.

View Article and Find Full Text PDF

A Hybrid Photoplethysmography (PPG) Sensor System Design for Heart Rate Monitoring.

Sensors (Basel)

November 2024

Major of Device Science and Engineering, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka 8160811, Japan.

A photoplethysmography (PPG) sensor is a cost-effective and efficacious way of measuring health conditions such as heart rate, oxygen saturation, and respiration rate. In this work, we present a hybrid PPG sensor system working in a reflective mode with an optoelectronic module, i.e.

View Article and Find Full Text PDF

Enhancement of antioxidative potential of mung bean by oxygen plasma irradiation of seeds.

Sci Rep

December 2024

Department of Plasma and Quantum Science and Engineering, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Japan.

The present study aimed to assess the effect of oxygen plasma treatment on the germination rate, growth, and antioxidative activity of mung beans at different pressures and irradiation exposure times. Oxygen plasma was capable of shortening the germination time as well as improving the germination rate at each gas pressure and exposure time compared to control. The germination rate of plasma-treated seeds exceeded 90% within 18 h of seeding compared to 30 h for the control (without plasma treatment).

View Article and Find Full Text PDF

Developing a Flow-Resistance Module for Elucidating Cell Mechanotransduction on Multiple Shear Stresses.

ACS Biomater Sci Eng

December 2024

Center for Biomechanics and Bioengineering, Beijing Key Laboratory of Engineered Construction and Mechanobiology and Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China.

Article Synopsis
  • Fluid shear stress is crucial for regulating cell behavior, maintaining tissue health, and influencing disease, necessitating an understanding of how cells respond to different shear stress levels.
  • A new flow-resistance module with three microchannels was created to simulate various shear stress levels, validated through computational simulations and experiments.
  • The study examined cellular responses, including gene expression and changes in structure, under different shear stresses, demonstrating that the module effectively characterizes these cellular responses.
View Article and Find Full Text PDF

Microfluidics-based automatic immunofluorescence staining for single-molecule localization microscopy.

Biomed Opt Express

December 2024

State Key Laboratory of Digital Medical Engineering, School of Biomedical Engineering, Hainan University, Sanya 572025, China.

Full automation of single-molecule localization microscopy (SMLM) is crucial for large-scale and high-throughput cellular imaging. It is well-known that SMLM typically consists of three major steps: immunofluorescence (IF) staining, optical imaging, and image processing. Currently, automation in optical imaging and image processing is almost complete; however, the automation of IF staining has been slow to advance, probably due to its complicated experimental operations.

View Article and Find Full Text PDF

Mixed linkage (1,3;1,4)-β-d-glucan (MLG) is a well-recognized bioactive carbohydrate and dietary fibre with expanding applications in food industry. The MLG are small components of the cell wall of vegetative tissues of cereals synthetized by members of the genes (). Within the family, the has been the major contributor in wheat.

View Article and Find Full Text PDF

Prediction of Human Papillomavirus-Host Oncoprotein Interactions Using Deep Learning.

Bioinform Biol Insights

December 2024

Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, Accra, Ghana.

Background: Human papillomavirus (HPV) causes disease through complex interactions between viral and host proteins, with the PI3K signaling pathway playing a key role. Proteins like AKT, IQGAP1, and MMP16 are involved in HPV-related cancer development. Traditional methods for studying protein-protein interactions (PPIs) are labor-intensive and time-consuming.

View Article and Find Full Text PDF

Engineering skyrmion from spin spiral in transition metal multilayers.

J Phys Condens Matter

December 2024

Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203 Chennai, Tamil Nadu, India.

Skyrmions having topologically protected field configurations with particle-like properties play an important role in various fields of science. Our present study focus on the generation of skyrmion from spin spiral in the magnetic multilayers of 4d/Fe/Ir(111) with 4d = Y, Zr, Nb, Mo, Ru, Rh. Here we investigate the impact of 4d transition metals on the isotropic Heisenberg exchanges and anti-symmetric Dzyaloshinskii-Moriya interactions originating from the broken inversion symmetry at the interface of 4d/Fe/Ir(111) multilayers.

View Article and Find Full Text PDF

ProHap enables human proteomic database generation accounting for population diversity.

Nat Methods

December 2024

Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway.

Amid the advances in genomics, the availability of large reference panels of human haplotypes is key to account for human diversity within and across populations. However, mass spectrometry-based proteomics does not benefit from this information. To address this gap, we introduce ProHap, a Python-based tool that constructs protein sequence databases from phased genotypes of reference panels.

View Article and Find Full Text PDF

Spatiotemporal Retention of Structural Color and Induced Stiffening in Crosslinked Hydroxypropyl Cellulose Beads.

Macromol Rapid Commun

December 2024

Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden.

Hydroxypropyl cellulose (HPC) is known for its ability to form cholesteric liquid crystalline phases displaying vivid structural colors. However, these vibrant colors tend to fade over time when the material dries. This issue is a major bottleneck to finding practical applications for these materials.

View Article and Find Full Text PDF

The phytopathogenic oomycete Phytopythium helicoides, previously known as Pythium helicoides, has emerged as a new threat to the Shatangju citrus cultivar (Citrus reticulata cv. Shatangju; '' in Chinese) in southern China. To enable rapid diagnosis and control of the leaf blight and stem rot caused by P.

View Article and Find Full Text PDF

Reevaluation of the Suitability of Xe Nuclear Magnetic Resonance Spectroscopy for Pore Size Determination in Porous Carbon Materials.

J Am Chem Soc

December 2024

Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan.

Xenon isotope nuclear magnetic resonance (Xe-NMR) spectroscopy has been widely used to evaluate the pore structure of materials. However, determining how to apply this technique to investigate porous carbon materials is sometimes challenging, partly due to the structural disorder and heterogeneity of the surface properties of these materials, and partly due to the lack of reliable methods for controlling and assessing the density of adsorbed Xe. In this study, we designed and constructed a temperature- and pressure-controllable Xe-NMR system to evaluate the interaction between activated carbon (AC) and adsorbed Xe molecules.

View Article and Find Full Text PDF