2,605 results match your criteria: "School of Energy and Environment[Affiliation]"
Angew Chem Int Ed Engl
January 2025
Tongji University, School of Chemical Science and Engineering, Chifeng Road No.67, Shanghai, CHINA.
The synthesis of crystalline covalent organic frameworks (COFs) has in principle relied on reversible dynamic chemistry. A general method to synthesize irreversibly bonded COFs is urgently demanded for driving the COF chemistry to a new era. Here we report a universal two-step method for the straightforward synthesis of irreversibly amide-linked COF (AmCOF) membranes by autocatalytic interfacial polymerization (AIP).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
Correction for '(Thio)chromenone derivatives exhibit anti-metastatic effects through selective inhibition of uPAR in cancer cell lines: discovery of an uPAR-targeting fluorescent probe' by So-Young Chun , , 2025, https://doi.org/10.1039/D4CC05907G.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong.
Radiative cooling textiles designed to reflect incoming sunlight and enhance mid-infrared (MIR) emissivity show great potential for ensuring personal thermal comfort. Thus, these textiles are gaining prominence as a means of combating the heat stress induced by global warming. Nonetheless, integrating radiative cooling effects into scalable textile materials for personal thermoregulation remains a formidable challenge.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, PR China.
Simultaneous CO/NO removal from flue gas is extensively attracted to meet the goal of atmospheric pollutant and carbon mitigations. An optimized CaO-CO system via the design of the bio-modified calcium-based pellet is proposed in which the pyrolysis of biomass ensures efficient CO/NO removal. Since the type of biomass shows great influence on the characteristics of pyrolysis products which may influence the behavior of reaction, the correlations of characteristics of biomass structural components, modified Ca-sorbent, and CO/NO removal reactivity were established with the support of experimental results and Density functional theory (DFT) calculation.
View Article and Find Full Text PDFSci Rep
December 2024
Clean Energy Technologies Research Institute (CETRI), Process Systems Engineering, Faculty of Engineering & Applied Science, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
Real-world emissions of particulate matter (PM) and smoke opacity were studied for an older-model diesel pickup truck during four types of driving tests, namely fixed-point test, snap-acceleration test, road test, and hill road test (uphill/downhill). A portable emissions measurement system (PEMS) and an opacimeter were used to measure real-time concentrations of PM and smoke opacity, respectively, and simultaneously. Correlation analysis showed a significant positive association between PM and opacity, suggesting the feasibility of using an opacimeter to estimate PM mass emissions from diesel vehicles.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China.
Porous carbon adsorption represents a critical component of CCUS technologies, with microporous structures playing an essential role in CO capture. The preparation of porous carbon introduces intrinsic defects, making it essential to consider both pore size and these defects for a comprehensive understanding of the CO adsorption mechanism. This study investigates the mechanisms of CO adsorption influenced by intrinsic defects and pore size using multiscale methods, incorporating experimental validation, Grand Canonical Monte Carlo simulations, and Density Functional Theory simulations.
View Article and Find Full Text PDFSmall
December 2024
School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China.
Submicron particulate matter (PM) can penetrate deeply into human tissue, posing a serious threat to human health. However, the electrostatic charge of commercial respirators is easily dissipated, making it difficult to maintain long-term filtration. Herein, a hierarchically porous filter based on nanofibers with accessible porosity and particulate-attractive surfaces, achieving significant filtration performance is developed through polarity-driven interactions.
View Article and Find Full Text PDFBMC Med Res Methodol
December 2024
Department of Military Health Statistics, Faculty of Preventive Medicine, Air Force Medical University/Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Xi'an, Shaanxi, China.
Background: Accurate fasting plasma glucose (FPG) trend prediction is important for management and treatment of patients with type 2 diabetes mellitus (T2DM), a globally prevalent chronic disease. (Generalised) linear mixed-effects (LME) models and machine learning (ML) are commonly used to analyse longitudinal data; however, the former is insufficient for dealing with complex, nonlinear data, whereas with the latter, random effects are ignored. The aim of this study was to develop LME, back propagation neural network (BPNN), and mixed-effects NN models that combine the 2 to predict FPG levels.
View Article and Find Full Text PDFJ Air Waste Manag Assoc
December 2024
School of energy and environment, Anhui university of technology, Maanshan, People's Republic of China.
Biogas can be used for complementary load-balancing with renewable intermittent power, thus maintaining overall energy output stability. However, biogas load balancing load balancing is typically used in small-scale distributed energy systems, constrained by factors such as technology and land requirements, making it challenging to scale up. Therefore, this study proposes a closed-loop ecological cycle system, where biogas provides load leveling support for large-scale intermittent power sources in desertified regions dominated by animal husbandry.
View Article and Find Full Text PDFSmall
December 2024
School of Energy Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China.
Flexible perovskite solar cells (FPSCs) have great promise for applications in wearable technology and space photovoltaics. However, the unpredictable crystallization of perovskite on flexible substrates results in significantly lower efficiency and mechanical durability than industry standards. A strategy is investigated employing the polymer electrolyte poly(allylamine hydrochloride) (PAH) to regulate crystallization and passivate defect states in perovskite films on flexible substrates.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China.
Simulation of secondary organic aerosol (SOA) in models has been an uncertain component in determining the impacts of atmospheric aerosols on air quality and climate. Recent studies have shown that reactive chlorine can rapidly oxidize volatile organic compounds (VOCs), trigger SOA formation, and alter other oxidants, thus having a potentially significant effect on SOA, which has not been thoroughly investigated at the global scale. Here, we developed a chlorine-SOA simulation within a global chemical transport model along with updated anthropogenic continental chlorine emissions.
View Article and Find Full Text PDFOrg Biomol Chem
December 2024
School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China.
Nitroso groups are widely present in biologically active compounds in medicinal chemistry, and nitroso compounds serve as important building blocks in organic chemistry and materials science. Nitrosoarenes, in particular, showcase remarkable versatility, functioning as both electrophilic and nucleophilic reagents in a broad spectrum of organic reactions, thereby holding significant relevance in organic chemistry. This review aims to provide a comprehensive overview of the latest advancements in nitrosoarene reactions spanning a decade.
View Article and Find Full Text PDFMolecules
November 2024
School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
Adv Mater
December 2024
Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
Metal halide perovskites, known for their pure and tunable light emission, near-unity photoluminescence quantum yields, favorable charge transport properties, and excellent solution processability, have emerged as promising materials for large-area, high-performance light-emitting diodes (LEDs). Over the past decade, significant advancements have been made in enhancing the efficiency, response speed, and operational stability of perovskite LEDs. These promising developments pave the way for a broad spectrum of applications extending beyond traditional solid-state lighting and displays to include visible light communication (VLC) and lasing applications.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Energy and Environment, City University of Hong Kong, Kowloon, 999077, Hong Kong.
Solar steam generation (SSG) presents a promising approach to addressing the global water crisis. Central to SSG is solar photothermal conversion that requires efficient light harvesting and management. Hierarchical structures with multi-scale light management are therefore crucial for SSG.
View Article and Find Full Text PDFEnviron Res
December 2024
School of Energy and Environment, Southeast University, Nanjing, 210096, China; Key Laboratory of Water Safety and Aquatic Ecosystem Health of Xizang, Xianyang, 712082, China; Key Laboratory of Water Pollution Control and Ecological Restoration of Xizang, National Ethnic Affairs Commission, Xianyang, 712082, China. Electronic address:
In high-altitude regions, elevated mercury (Hg) levels in wastewater treatment plants (WWTPs) influent raise concerns about treatment efficiency and environmental impact. This study investigated the Hg biosorption capacity of activated sludge under high-altitude conditions, focusing on the binding mechanisms between EPS and Hg, and variations in EPS secretion. Low pressure, oxygen, and temperature at high altitudes increase EPS secretion, enhancing Hg biosorption.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Energy and Environment, Southeast University, Nanjing, 211189, Jiangsu, P. R. China.
Producing crystalline covalent organic framework (COF) films is intimately related to the elusive nucleation and growth processes, which is desirable for efficient molecular transport. Rational control over these processes and insights into the mechanisms are crucial to improve synthetic methodology and achieve COF films with regular channels. Here, we report the controllable synthesis of COF films via the temperature-swing strategy and explore their crystallization from monomer assemblies to film formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
Biomass-burning organic aerosol(s) (BBOA) are rich in brown carbon, which significantly absorbs solar irradiation and potentially accelerates global warming. Despite its importance, the multiphase photochemistry of BBOA after light absorption remains poorly understood due to challenges in determining the oxidant concentrations and the reaction kinetics within aerosol particles. In this study, we explored the photochemical reactivity of BBOA particles in multiphase S(IV) oxidation to sulfate.
View Article and Find Full Text PDFMethodsX
June 2024
Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand.
Climate change and increasing water demands underscore the importance of water resource management. Precise precipitation forecasting is critical to effective management. This study introduced a Daily Precipitation Forecasting Hybrid (DPFH) technique for central Thailand, which uses three different input-based models to improve prediction accuracy.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.
A class of (thio)chromenone derivatives has been identified as suitable ligands for uPAR, a glycoprotein with a prognostic value in a large number of human cancers. The (thio)chromenone agents actively inhibited the binding of uPAR to uPA with a binding affinity of 18.6 nM, reducing cell migration in the wound healing assay by up to 40% without apparent cell motility.
View Article and Find Full Text PDFSmall
December 2024
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
Molybdenum diphosphide (MoP), a topological semimetal, possesses distinctive properties and applications in catalysis, energy storage, and condensed matter physics. However, synthesizing high-purity MoP is complex and often results in undesired stoichiometric by-products. Additionally, the intrinsic orthorhombic crystal structure makes it difficult to synthesize MoP in a 2D morphology, which is desirable for device and energy applications.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
School of Electronic Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China.
The dynamic time-gating anticounterfeiting based on phosphorescence materials is the current hot topic of research. However, the short change time from nanosecond-level fluorescence false information to μs-level fluorescence correct information makes it easily deciphered just by turning off ultraviolet (UV) light. Herein, we first reported a new type of minute-level dynamic time-gating anticounterfeiting technology based on the ethanol-induced phase transition between the red-emitting CsMnBr crystals and green-emitting CsMnBr crystals.
View Article and Find Full Text PDFAdv Mater
December 2024
City University of Hong Kong Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen, 518000, China.
The efficient mitigation of harmful nitrogen oxides (NO) under ambient conditions remains a challenging task. Selective adsorption offers a viable solution for the capture of low-concentration NO from the polluted stream at low temperatures. This review summarizes recent progress in the development of NO adsorbents, delves into the understanding of adsorption mechanisms, and discusses the criteria for evaluating their performance.
View Article and Find Full Text PDFSmall
December 2024
Department of Laboratory Medicine, Precision Medicine Translational Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
Hydrogen is an essential energy resource, playing a pivotal role in advancing a sustainable future. Electrolysis of seawater shows great potential for large-scale hydrogen production but encounters challenges such as electrode corrosion caused by chlorine evolution. Herein, a durable CoCO/CoFe layered double hydroxide (LDH) electrocatalyst is presented for alkaline seawater oxidation, showcasing resistance to corrosion and stable operation exceeding 1,000 h at a high current density of 1 A cm.
View Article and Find Full Text PDFSmall
December 2024
Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
The electrochemical reduction of oxygen is pivotal for advancing emerging energy technologies. Precise control over morphology and electronic structure is essential for enhancing catalytic activity and stability in the oxygen reduction reaction (ORR). In this study, a freestanding carbon electrode is developed by in-situ growth of carbon nanotube (CNT)-encapsulated bimetallic CoM (M = Ni, Fe, Mn, Cu) nanoparticles (NPs) within a hierarchical carbonized wood matrix (CoM@NWCC).
View Article and Find Full Text PDF