1,307 results match your criteria: "School of Energy and Chemical Engineering[Affiliation]"

3D-printed poly(ethylene) glycol diacrylate (PEGDA)-chitosan-nanohydroxyapatite scaffolds: Structural characterization and cellular response.

Int J Biol Macromol

January 2025

Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia. Electronic address:

Polymer-based scaffolds with bioactive materials offer great potential in bone tissue engineering. Polyethylene glycol diacrylate (PEGDA) scaffolds fabricated via liquid crystal display 3D printing technique lack inherent osteoconductivity. To improve such properties, chitosan of 10 and 20 wt% and nanohydroxyapatite (nHA) (3-10 wt%) were incorporated into PEGDA scaffolds.

View Article and Find Full Text PDF

We report the exfoliation of ultrathin gallium oxide (GaO) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These GaO films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on GaO provides a versatile platform for device fabrication.

View Article and Find Full Text PDF

Organic anode materials have garnered attention for use in rechargeable Li-ion batteries (LIBs) owing to their lightweight, cost-effectiveness, and tunable properties. However, challenges such as high electrolyte solubility and limited conductivity, restrict their use in full-cell LIBs. Here, we report the use of highly crystalline Cl-substituted contorted hexabenzocoronene (Cl-cHBC) as an efficient organic anode for full-cell LIBs.

View Article and Find Full Text PDF

The utilization of redox mediators (RMs) in lithium-oxygen batteries (LOBs) has underscored their utility in high overpotential during the charging process. Among the currently known RMs, it is exceptionally challenging to identify those with a redox potential capable of attenuating singlet oxygen (O) generation while resisting degradation by reactive oxygen species (ROS), such as O and superoxide (O ). In this context, computational and experimental approaches for rational molecular design have led to the development of 7,7'-bi-7-azabicyclo[2.

View Article and Find Full Text PDF

Metabolic Engineering of Corynebacterium glutamicum for High-Level Production of 1,5-Pentanediol, a C5 Diol Platform Chemical.

Adv Sci (Weinh)

December 2024

Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.

The biobased production of chemicals is essential for advancing a sustainable chemical industry. 1,5-Pentanediol (1,5-PDO), a five-carbon diol with considerable industrial relevance, has shown limited microbial production efficiency until now. This study presents the development and optimization of a microbial system to produce 1,5-PDO from glucose in Corynebacterium glutamicum via the l-lysine-derived pathway.

View Article and Find Full Text PDF

Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).

View Article and Find Full Text PDF

Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.

View Article and Find Full Text PDF

Despite numerous studies aimed at solving the detrimental dissolution issue of organic electrode materials (OEMs), a fundamental understanding of their dissolution mechanism has not yet been established. Herein, we systematically investigate how changes in electrolyte composition affect the ion-solvent interactions propagating to OEM dissolution by changing the cation. The cyclability of OEM is significantly different by alkali cations, where the OEM with K is stable even after 300 cycles and that with Li is drastically decayed within 100 cycles.

View Article and Find Full Text PDF

Polythiophene donors offer scalable and cost-effective solutions for the organic photovoltaic industry. A thorough understanding of the structure-property-performance relationship is essential for advancing polythiophene-based organic solar cells (PTOSCs) with high power conversion efficiencies (PCEs). Herein, we develop two polythiophene donors─PTTz-CN and PTTz-CN(T2)─to verify the energy loss-quantum efficiency relationship.

View Article and Find Full Text PDF

Optimization of the Zinc Deposition Interface by Sn Nanoparticles for Fast-Charging Zinc Metal Anodes.

Langmuir

December 2024

School of Material Science & Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China.

The electrodeposition behavior of zinc metal anodes critically correlates with the electrode surface properties. The tendency for inhomogeneous deposition of zinc is more severe, especially under high current density. Herein, the surface structure of zinc and zinc deposition substrates is reconstructed with a uniform metal tin (Sn) coating via a simple evaporation method.

View Article and Find Full Text PDF

Electrolyte additive engineering enables the creation of long-lasting interfacial layers that protect electrodes, thus extending the lifetime of high-energy lithium-ion batteries employing Ni-rich Li[NiCoMn]O (NCM) cathodes. However, batteries face various limitations if existing additives are employed alone without an appropriate combination. Herein, the study reports the development of a molecular-engineered salt-type multifunctional additive, lithium bis(phosphorodifluoridate) triethylammonium ethenesulfonate (LiPENS), that leverages the different functionalities of phosphorous, nitrogen, and sulfur-embedded motifs, as well as the classical additive vinylene carbonate (VC), to construct protective interfacial layers.

View Article and Find Full Text PDF

The advent of next-generation nonfullerene acceptors (NFAs) has propelled major advances in organic solar cells (OSCs). Here we report an NFA design incorporating CF-terminated side chains having varying -(CH)-CF linker lengths ( = 1, 2, and 3) which introduce new intermolecular interactions, hence strong modulation of the photovoltaic response. We report a systematic comparison and contrast characterization of this NFA series with a comprehensive set of chemical/physical techniques versus the heavily studied third-generation NFA, Y6, revealing distinctive and beneficial properties of this new NFA series.

View Article and Find Full Text PDF

Incorporating carbon-based fillers into triboelectric nanogenerators, TENGs, is a compelling strategy to enhance the power output. However, the lack of systematic studies comparing various carbon fillers and their impact on tribopositive contact layers necessitates further research. To address these concerns, various carbon fillers (including buckminsterfullerene (C), graphene oxide (GO), reduced graphene oxide (rGO), multi-wall carbon nanotube (MWCNT), and super activated carbon (SAC)) with distinct structural and electrical properties are mixed with polyvinyl alcohol, PVA, to form PVA-carbon composites and used as tribopositive layers in the contact-separation of TENGs.

View Article and Find Full Text PDF

Retraction notice to "Pyrolysis: An effective technique for degradation of COVID-19 medical wastes" [Chemosphere 275 (2021) 130092].

Chemosphere

December 2024

Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology (PETROMAT), Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.

View Article and Find Full Text PDF

Solar fuel production involving the conversion of solar energy directly into chemical fuels such as hydrogen and valuable chemicals using photoelectrochemical (PEC) cells and photocatalysts (PCs) offers a promising avenue for sustainable energy while reducing carbon emissions. However, existing PEC cells and PCs fall short of economic viability due to their low solar-to-chemical (STC) conversion efficiency associated with the employed semiconductors, highlighting the clear need for identifying ideal semiconductor materials. Organic semiconductors (OSs), π-conjugated carbon-based materials, have emerged as promising candidates for enhancing STC conversion efficiency due to their remarkable optoelectrical properties, which can be readily adjustable through molecular engineering.

View Article and Find Full Text PDF

Graphitic carbon nitride (CN) is a kind of visible light-responsive photocatalyst that has been of great interest in wastewater treatment. However, its environmental impact and biological effect remains to be elucidated. This study investigated the effect of CN nanosheets on bacterial abundance and antibiotic tolerance in wastewater.

View Article and Find Full Text PDF

Retraction notice to "Utilization of agricultural lignocellulosic wastes for biofuels and green diesel production" [Chemosphere 290(2022) 133246].

Chemosphere

December 2024

School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900, Sepang, Selangor, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.

View Article and Find Full Text PDF

Strengthened d-p Orbital Hybridization on Metastable Cubic MoC for Highly Stable Lithium-Sulfur Batteries.

ACS Nano

December 2024

Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials, Xiamen University, Xiamen 361005, P. R. China.

Suppressing the lithium polysulfide (LiPS) shuttling as well as accelerating the conversion kinetics is extremely crucial yet challenging in designing sulfur hosts for lithium-sulfur (Li-S) batteries. Phase engineering of nanomaterials is an intriguing approach for tuning the electronic structure toward regulating phase-dependent physicochemical properties. In this study, a metastable phase δ-MoC catalyst was elaborately synthesized via a boron doping strategy, which exhibited a phase transfer from hexagonal to cubic structure.

View Article and Find Full Text PDF

The inverse design of tailored organic molecules for specific optoelectronic devices of high complexity holds an enormous potential but has not yet been realized. Current models rely on large data sets that generally do not exist for specialized research fields. We demonstrate a closed-loop workflow that combines high-throughput synthesis of organic semiconductors to create large datasets and Bayesian optimization to discover new hole-transporting materials with tailored properties for solar cell applications.

View Article and Find Full Text PDF

Dynamic Modulation of Afterglow Emission in Polymeric Phosphors via Inverse Opal Photonic Structures.

Adv Mater

December 2024

Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.

Tuning the afterglow of polymeric phosphors is critical for advancing their use in optical data storage and display technologies. Despite advancements in polymer matrix design and dopant engineering, achieving dynamic control over afterglow intensity remains a significant challenge. In this study, a novel approach is introduced for dynamically tuning the afterglow of polymeric phosphors by integrating them into an inverse opal photonic structure.

View Article and Find Full Text PDF

Developing bifunctional electrocatalysts from earth-abundant first-row transition metals for large-scale hydrogen production through water electrolysis is both promising and challenging. This study presents a ternary layered double hydroxide (LDH) as a bifunctional electrocatalyst for the hydrogen evolution reaction (HER) and benzyl alcohol oxidation (BAOR). The synergy between 2D NiFeCo LDH and non-Ti-based NbCT MXene enhances electrochemical performance.

View Article and Find Full Text PDF

The photovoltaic performance of inverted perovskite solar cells (PSCs) relies on effectively managing the interface between the hole extraction layer and the light-absorbing perovskite layer. In this study, we have synthesised (4-(3,6-bis(methylthio)-9H-carbazol-9-yl)butyl)phosphonic acid (MeS-4PACz), which forms a self-assembled monolayer (SAM) on the fluorine-doped tin oxide (FTO) electrode. The molecule's methylthio substituents generate a favourable interfacial dipole moment and interact with the perovskite layer.

View Article and Find Full Text PDF

A Zn-coordinated porphyrinic artificial solid-electrolyte interphase (αSEI) layer, named [Zn]PP-4COO-(Zn), was developed to improve the reversibility of zinc metal plating/stripping in aqueous zinc-ion batteries (ZIBs). Inspired by nitrogen-terminating sites of biological molecules coordinating and transporting zinc in zinc metabolic processes, the αSEI layer was designed with zinc ions connecting porphyrinic building blocks to form two-dimensional clathrate sheets and stacking -plane sheets along the -axis to allow N cages to align and form porphyrinic N channels for zinc transport. The [Zn]PP-4COO-(Zn) αSEI layer was Zn-conductive and structurally durable during repeated stripping/plating.

View Article and Find Full Text PDF
Article Synopsis
  • The development of silicon (Si) materials is crucial for advancing various technologies like semiconductors and solar cells, presenting significant production challenges.
  • The study reveals that using molten AlCl salt during the thermochemical reduction of silicon oxides can enhance the reduction process, particularly with specific metals like magnesium (Mg).
  • The findings suggest that the choice of metal affects the properties of the final silicon product and allows for more efficient, cost-effective production at lower temperatures (around 250 °C).
View Article and Find Full Text PDF

Advancements in Acoustic Cavitation Modelling: Progress, Challenges, and Future Directions in Sonochemical Reactor Design.

Ultrason Sonochem

January 2025

School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. Electronic address:

This review provides a comprehensive overview of ultrasonic wave propagation, with a primary focus on high-power ultrasound systems where cavitation bubbles are likely to occur. The review is structured to guide readers through the historical development of cavitation models, from early works such as the Rayleigh-Plesset equation to more advanced numerical approaches. It explores the dynamics of cavitation bubbles, their physical effects, and the key factors influencing bubble formation, growth, and collapse.

View Article and Find Full Text PDF