5,148 results match your criteria: "School of Chemistry and Materials Science[Affiliation]"
ACS Appl Mater Interfaces
January 2025
College of Energy, Soochow Institute for Energy and Materials Innovations, Light Industry Institute of Electrochemical Power Sources, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, China.
The solid-electrolyte interphase (SEI) strongly determines the stability and reversibility of aqueous Zn-ion batteries (AZIBs). In traditional electrolytes, the nonuniform SEI layer induced by severe parasitic reactions, such as the hydrogen evolution reaction (HER), will exacerbate the side reactions on Zn anodes, thus leading to low zinc utilization ratios (ZURs). Herein, we propose to use methoxy ethylamine (MOEA) as a nucleophilic additive, which has a stronger nucleophilic characteristic than water, with the advantage of an abundance of nucleophilic atoms.
View Article and Find Full Text PDFWater Res
December 2024
Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:
Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.
View Article and Find Full Text PDFBioelectrochemistry
December 2024
West Guangxi Key Laboratory for Prevention and Treatment of High-incidence Diseases, Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China. Electronic address:
Argonaute 2 (Ago2) is a crucial enzyme in the RNA interference (RNAi) pathway, essential for gene silencing via the cleavage of target messenger RNA (mRNA) mediated by microRNA (miRNA) or small interfering RNA (siRNA). The activity of Ago2 is a significant biomarker for various diseases, including cancer and viral infections, necessitating precise monitoring techniques. Traditional methods for detecting Ago2 activity are often cumbersome and lack the necessary sensitivity and specificity for low-abundance targets in complex samples.
View Article and Find Full Text PDFSmall
January 2025
School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
Intrinsic low conductivity, poor structural stability, and narrow interlayer spacing limit the development of MnO in sodium-ion (Na) supercapacitors. This work constructs the hollow cubic Mn-PBA precursor through an ion-exchange process to in situ obtain a hollow cubic H-Ni-MnO composite with Ni doping and oxygen vacancies (O) via a self-oxidation strategy. Experiments and theoretical calculations show that the hollow nanostructure and the expanding interlayer spacing induced by Ni doping are beneficial for exposing more reactive sites, synergistically manipulating the Na transport pathways.
View Article and Find Full Text PDFLangmuir
January 2025
Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
Steric stabilization and lubrication give loop polymer brushes enhanced antifouling properties. In the study, linear zwitterionic poly(NMASMCMS) brushes were first constructed on a poly(ethylene terephthalate) (PET) surface through surface-initiated reversible addition-fragmentation chain-transfer (SI-RAFT) polymerization. The tethered linear brushes on sheets were then thiolated with ethanolamine, followed by oxidation to form loop brushes.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
Conventional solid/liquid electrochemical interfaces typically encounter challenges with impeded mass transport for poor electrochemical quantification due to the intricate pathways of reactants from the bulk solution. To address this issue, this work reports an innovative approach integrating a target-activated DNA framework nanomachine with electrochemically driven metal-organic framework (MOF) conversion for self-sacrificial biosensing. The presence of the target biomarker serotonin initiates the DNA framework nanomachine by an entropy-driven circuit to form a cross-linked nanostructure and subsequently release the Fe-MOF probe.
View Article and Find Full Text PDFTheranostics
January 2025
School of Chemistry and Materials Science, Anhui Normal University, Wuhu 230022, China.
Reproductive health-related diseases have a significant impact on the well-being of millions of women worldwide, severely compromising their quality of life. Women encounter unique challenges in terms of reproductive health, including gynecological diseases and malignant neoplasms prior to pregnancy, as well as complications during pregnancy that greatly undermine their physical and mental health. Despite recent advancements in the field of female reproduction, substantial challenges still persist.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China.
J Org Chem
January 2025
School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
The Ullmann coupling and oxidative coupling dehydrogenation reactions have occurred sequentially, catalyzed by Pd(OAc), which unexpectedly yielded fused imidazo[1,2-]phenanthridine derivatives in good to high yields. Structural analysis of the intermediate and final products indicated that the protocol did not include C-H and N-H arylation.
View Article and Find Full Text PDFCell Mol Immunol
January 2025
Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
Org Lett
January 2025
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences (CAS), CAS, Shanghai 200032, China.
Rearrangement of the skeleton is crucial for improving the structural complexity and diversity of type II polyketide natural products. In this study, we investigated the rearrangement process from a planar aromatic tetracyclic intermediate to the caged lactones, which is managed by five oxidoreductases. We chemically synthesized the proposed linear tetracyclic substrate, validated the transformation process through and experiments, and elucidated the enzyme-catalyzed mechanism using isotope labeling.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou 310006, China. Electronic address:
Developing multimodal combination therapy strategies to disrupt the redox homeostasis within tumor cells is currently an important approach in cancer treatment. In this study, we designed and prepared multifunctional composite nanoparticles MPDA-PEG@MnO@2-DG (MPPMD NPs) utilizing mesoporous polydopamine nanoparticles (MPDA NPs) as carriers. These carriers were coated with polyethylene glycol (PEG), and manganese dioxide (MnO) and loaded with 2-deoxy-d-glucose (2-DG).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China.
In recent years, perovskite solar cells (PSCs) have garnered considerable attention as a prime candidate for next-generation photovoltaic technology. Ensuring the structural stability of perovskites is crucial to the operational reliability of these devices. However, the nonphotoactive yellow phase (δ-FAPbI) of formamidine (FA)-based perovskites is more favorable in thermodynamics, making it challenging to achieve pure α phase in crystallization.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Departments of Chemistry, Fudan University, Shanghai 200433, China.
The efficient generation of complex initial structures for polymers remains a critical challenge in the field of molecular simulation. This necessitates the development of high-quality and highly efficient modeling algorithms. Inspired by fundamental polymerization reactions, we propose a general algorithm for an efficient de novo polymer model building, resulting in the development of the eXtendable Polymer Builder (XPB) package.
View Article and Find Full Text PDFAdv Mater
December 2024
State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China.
Nickel-iron layered double hydroxides (NiFe LDHs) are considered as promising substitutes for precious metals in oxygen evolution reaction (OER). However, most of the reported NiFe LDHs suffer from poor long-term stability because of the Fe loss during OER resulting in severe inactivation. Herein, a dynamically stable chelating interface through in situ transformation of asymmetric aldehyde-ligand (THB, 1,3,5-Tris(3'-hydroxy-4'-formylphenyl)-benzene) modified NiFe LDHs to anchor Fe and significantly enhance the OER stability is reported.
View Article and Find Full Text PDFTalanta
December 2024
Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China. Electronic address:
The mortality rate of tumor is still very high till now. Circulating tumor cells (CTCs) are the major culprit of high cancer mortality. To improve survival rate of cancer patients, real-time monitoring and quantitative detection of CTCs are of indescribable value.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
High-temperature graphitization of graphene oxide (GO) is a crucial step for enhancing interlayer stacking and repairing the in-plane defects of reduced graphene oxide (rGO) films. However, the fine control of the structural repair and reducing the energy consumption in thermal treatment remain challenges. In this study, ab-initio molecular dynamics simulations combined with experiments are used to investigate the structural evolution of rGO upon thermal annealing, with or without the presence of single-layer graphene (SLG).
View Article and Find Full Text PDFJACS Au
December 2024
Materials Discovery Laboratory (MaD Lab), Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States.
The capture of carbon dioxide (CO) is crucial for reducing greenhouse emissions and achieving net-zero emission goals. Metal-organic frameworks (MOFs) present a promising solution for carbon capture due to their structural adaptability, tunability, porosity, and pore modification. In this research, we explored the use of a copper (Cu(II))-based MOF called .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China.
Redox-active covalent organic frameworks (COFs) have been demonstrated as promising organic electrodes in many electrochemical devices. However, their inherently low conductivity significantly hinders the full utilization of their internal redox-active sites. To address this issue, a simple solvothermal method is used to in situ polymerize 2,4,6-triformylphloroglucinol (TP) and p-phenylenediamine (PA) on the surface of carbon nanotubes (CNTs), generating a nanocable-like COF-based nanocomposite, TpPa-COF@CNT nanocables, which contain abundant β-ketoenamine groups.
View Article and Find Full Text PDFGels
December 2024
School of Chemistry and Materials Science, Guangdong University of Education, Guangzhou 510303, China.
Compared to traditional liquid electrolytes, solid electrolytes have received widespread attention due to their higher safety. In this work, a vinyl functionalized metal-organic framework porous material (MIL-101(Cr)-NH-Met, noted as MCN-M) is synthesized by postsynthetic modification. A novel three-dimensional hybrid gel composite solid electrolyte (GCSE-P/MCN-M) is successfully prepared via in situ gel reaction of a mixture containing multifunctional hybrid crosslinker (MCN-M), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), ethylene carbonate (EC), diethylene glycol monomethyl ether methacrylate (EGM) and polyethylene (vinylidene fluoridee) (PVDF).
View Article and Find Full Text PDFACS Nano
January 2025
School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China.
The development of high-performance bifunctional single-atom catalysts for use in applications, such as zinc-air batteries, is greatly impeded by mild oxygen reduction and evolution reactions (ORR and OER). Herein, we report a bifunctional oxygen electrocatalyst designed to overcome these limitations. The catalyst consists of well-dispersed low-nuclearity Co clusters and adjacent Co single atoms over a nitrogen-doped carbon matrix (Co/NC).
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.
The electrochemical reduction reaction (RR) of CO to high value multicarbon products is highly desirable for carbon utilization. Dual transition metal atoms dispersed by N-doped graphene are able to be highly efficient catalysts for this process due to the synergy of the bimetallic sites for C-C coupling. In this work, we screened homonuclear dual-atom catalysts dispersed by N-doped graphene to investigate the potential in CO reduction to C products by employing density functional theory calculations.
View Article and Find Full Text PDFAdv Mater
December 2024
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China.
All-solid-state batteries (ASSBs) are regarded as promising next-generation energy storage technology owing to their inherent safety and high theoretical energy density. However, achieving and maintaining solid-solid electronic and ionic contact in ASSBs generally requires high-pressure fabrication and high-pressure operation, posing substantial challenges for large-scale production and application. In recent years, significant efforts are made to address these pressure-related challenges.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
The safety and cycling stability of potassium-ion batteries (PIBs) are deeply associated with potassium-ion electrolytes. However, due to the weak Lewis acidity of potassium ions, localized high-concentration electrolytes in PIBs are prone to excessive weak solvation. Herein, we propose an entropy repair strategy for the solvation structure of potassium ions and systematically design a moderately weakly solvated high-entropy localized high-concentration electrolyte.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Cooperative Innovation Center of Water Treatment Technology and Materials, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:
Rare earth elements (REEs) are extensively utilized in industry, agriculture, advanced materials and other fields, leading to their dispersion in water bodies as emerging contaminants. Meanwhile, the coexistence of REEs and heavy metals (HMs) has become a novel form of water contamination (REE-HM co-contamination), though scientists have limited understanding of its hazards. Here, Chlorococcum sp.
View Article and Find Full Text PDF