50,737 results match your criteria: "School of Chemistry and Chemical engineering[Affiliation]"

Traditional biological detection methods rely on signal amplification strategies such as enzymatic catalysis or nucleic acid amplification. However, their efficiency decreases in low-temperature environments, compromising their detection sensitivity. To break the loss of enzyme catalytic activity at low temperatures, research on cold-adaptive nanozymes has attracted much attention.

View Article and Find Full Text PDF

The electric control of magnetism has been considered to be promising for molecular spintronics and quantum information. However, the spin-electric coupling strength appears to be insufficient for application in most cases. Two major factors capable of amplifying the relative effect are spin-orbit coupling and ferroelectricity.

View Article and Find Full Text PDF

Gold-Catalyzed Synthesis of (Dihydro)quinolones by Cyclization of Benzaldehyde-Tethered Ynamides and Anilines.

Org Lett

March 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.

2-Quinolones represent a versatile class of compounds that are prevalent in natural and medicinally relevant molecules. Here we report a new approach to the selective formation of these structures. By gold catalysis, a range of benzaldehyde-tethered ynamides reacted with anilines, leading to 4-amino-3,4-dihydro-2-quinolones with high efficiency and excellent diastereoselectivity in dichloromethane.

View Article and Find Full Text PDF

Design Refinement of Catalytic System for Scale-Up Mild Nitrogen Photo-Fixation.

Nanomicro Lett

March 2025

School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China.

Ammonia and nitric acid, versatile industrial feedstocks, and burgeoning clean energy vectors hold immense promise for sustainable development. However, Haber-Bosch and Ostwald processes, which generates carbon dioxide as massive by-product, contribute to greenhouse effects and pose environmental challenges. Thus, the pursuit of nitrogen fixation through carbon-neutral pathways under benign conditions is a frontier of scientific topics, with the harnessing of solar energy emerging as an enticing and viable option.

View Article and Find Full Text PDF

Carbon Doping and Oxygen Vacancy-Tungsten Trioxide/CuSnS S-Scheme Heterojunctions for Boosting Visible-Light-Driven Photocatalytic Performance.

ACS Appl Mater Interfaces

March 2025

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, P. R. China.

Developing ideal photocatalysts for energy regeneration and environmental remediation by combining the advantages of individual semiconductors remains a significant challenge. Herein, tungsten trioxide (WO)/CuSnS S-scheme heterojunction composite photocatalysts are developed. Initially, doped oxygen vacancy (OV) was prepared on two-dimensional WO nanosheets by direct calcination method.

View Article and Find Full Text PDF

Magnetically targeted delivery of probiotics for controlled residence and accumulation in the intestine.

Nanoscale

March 2025

Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.

The effectiveness of orally delivered probiotics in treating gastrointestinal diseases is restricted by inadequate gut retention. In this study, we present a magnetically controlled strategy for probiotic delivery, which enables controlled accumulation and residence of probiotics in the intestine. The magnetically controlled probiotic is established by attaching amino-modified iron oxide (FeO-NH NPs) to polydopamine-coated GG (LGG@P) through electrostatic self-assembly and named as LGG@P@FeO.

View Article and Find Full Text PDF

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units.

Adv Mater

March 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.

View Article and Find Full Text PDF

Co-crystal engineering is of interest for many applications in pharmaceutical, chemistry and material fields, but rational design of co-crystals is still challenging. Although artificial intelligence has brought major changes in the decision-making process for materials design, yet limitations in generalization and mechanistic understanding remain. Herein, we sought to improve prediction of co-crystal by combining mechanistic thermodynamic modeling with machine learning.

View Article and Find Full Text PDF

The delicate construction of electrocatalysts with high catalytic activity is a strategic method to enhance the kinetics of lithium-sulfur batteries (LSBs). Adjusting the local structure of the catalyst is always crucial for understanding the structure-activity relationship between atomic structure and catalyst performance. Here, in situ induction of electron-deficient B enables phase engineering MoC, realizing the transition from hexagonal (h-MoC) to cubic phase (c-B-MoC).

View Article and Find Full Text PDF

Nanovaccines hold significant promise for the prevention and treatment of infectious diseases. However, the efficacy of many nanovaccines is often limited by inadequate stimulation of both innate and adaptive immune responses. Herein, we explore a rational vaccine strategy aimed at modulating innate cell microenvironments within lymph nodes (LNs) to enhance the generation of effective immune responses.

View Article and Find Full Text PDF

Quantum chemical methods and time-resolved laser spectroscopy are employed to elucidate ultrafast charge-separation processes in triphenylamine (TPA) derivatives upon photoexcitation. When changing the ambient solvent from non-electron-accepting to electron-acceptor solvents, such as chloroform, a vastly extended and multifaceted photochemistry of TPA derivatives is observed. Following initial excitation, two concurrent charge-transfer processes are identified.

View Article and Find Full Text PDF

The G-quadruplex (G4) is an important diagnostic and therapeutic target in cancers, but the development of theranostic probes for subcellular G4s remains challenging. In this work, we report three G4-targeted theranostic probes by conjugating a pyridostatin-derived G4 ligand to G4-specific iridium(III) complexes with desirable photophysical properties. These probes showed specifically enhanced luminescence to mitochondrial G4 in triple negative breast cancer (TNBC) cells.

View Article and Find Full Text PDF

A Z-Scheme Heterojunction g-CN/WO for Efficient Photodegradation of Tetracycline Hydrochloride and Rhodamine B.

Nanomaterials (Basel)

March 2025

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The construction of heterojunctions can effectively inhibit the rapid recombination of photogenerated electrons and holes in photocatalysts and offers great potential for pollutant degradation. In this study, a Z-scheme heterojunction g-CN/WO photocatalyst was synthesized using a combination of hydrothermal and calcination methods. The photocatalytic degradation performance was tested under visible light; the degradation efficiency of Rh B reached 97.

View Article and Find Full Text PDF

To significantly improve the tribological performance of epoxy resin (EP), a novel h-BN/MoS composite was successfully synthesized using spherical MoS particles with lamellar self-assembly generated through the calcination method, followed by utilizing the "bridging effect" of a silane coupling agent to achieve a uniform and vertically oriented decoration of hexagonal boron nitride (h-BN) nanosheets on the MoS surface. The chemical composition and microstructure of the h-BN/MoS composite were systematically investigated. Furthermore, the enhancement effect of composites with various contents on the frictional properties of epoxy coatings was studied, and the mechanism was elucidated.

View Article and Find Full Text PDF

Photocatalytic Degradation of Ciprofloxacin by GO/ZnO/Ag Composite Materials.

Nanomaterials (Basel)

March 2025

School of Materials Science and Engineering, Jiamusi University, Jiamusi 154000, China.

This study synthesized graphene oxide (GO)/zinc oxide (ZnO)/silver (Ag) composite materials and investigated their photocatalytic degradation performance for ciprofloxacin (CIP) under visible light irradiation. GO/ZnO/Ag composites with different ratios were prepared via an impregnation and chemical reduction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that under optimal conditions (20 mg/L CIP concentration, 15 mg catalyst dosage, GO/ZnO-3%/Ag-doping ratio, and pH 5), the GO/ZnO/Ag composite exhibited the highest photocatalytic activity, achieving a maximum degradation rate of 82.

View Article and Find Full Text PDF

The formation of ice due to global climate change poses challenges across multiple industries. Traditional anti-icing technologies often suffer from low efficiency, high energy consumption, and environmental pollution. Photothermal and hydrophobic surfaces with nano-micro structures (PHS-NMSs) offer innovative solutions to these challenges due to their exceptional optical absorption, heat conversion capabilities, and unique surface water hydrophobic characteristics.

View Article and Find Full Text PDF

Dual Defect-Engineered BiVO Nanosheets for Efficient Peroxymonosulfate Activation.

Nanomaterials (Basel)

February 2025

Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

Defects and heteroatom doping are two refined microstructural factors that significantly affect the performance of photocatalytic materials. Coupling defect and doping engineering is a powerful approach for designing efficient photocatalysts. In this research, we successfully construct dual defect-engineered BiVO nanosheets (BVO-N-OV) by introducing N doping and oxygen vacancies through ammonium oxalate-assisted thermal treatment of BiVO nanosheets.

View Article and Find Full Text PDF

Progress in the Development of Flexible Devices Utilizing Protein Nanomaterials.

Nanomaterials (Basel)

February 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

Flexible devices are soft, lightweight, and portable, making them suitable for large-area applications. These features significantly expand the scope of electronic devices and demonstrate their unique value in various fields, including smart wearable devices, medical and health monitoring, human-computer interaction, and brain-computer interfaces. Protein materials, due to their unique molecular structure, biological properties, sustainability, self-assembly ability, and good biocompatibility, can be applied in electronic devices to significantly enhance the sensitivity, stability, mechanical strength, energy density, and conductivity of the devices.

View Article and Find Full Text PDF

The pressing demand for both established and innovative technologies to expand laser wavelengths has rendered high-performance nonlinear optical (NLO) crystals with large optical anisotropy indispensable. Here, centrosymmetric [SHC(NH)]CdBr (1) and pseudo-2D layered [SC(NH)]CdBr (2), as well as pseudo-3D noncentrosymmetric [SC(NH)]CdCl (3) are successfully synthesized through the introduction of π-conjugated SC(NH) groups. Compared to ionic compound 1 containing full-halogen coordination tetrahedra, covalent compounds 2 and 3 featuring novel polar [SC(NH)]CdX (X = Br, Cl) tetrahedral units demonstrate enhanced bandgaps (>4 eV) and birefringences (>0.

View Article and Find Full Text PDF

We report using visible-light-induced generation of tether-tunable distonic radical anions for the general catalytic lactonization/lactamization of aromatic carboxylic acids and benzamides. Its success relies on the specific cyclic diacyl peroxide and catalytic amount of CsI, enabling the generation of electrophilic heteroatom-centered radicals via a philicity regulation strategy. Key features include operational simplicity, excellent functional group tolerance, broad substrate scope, high chemo- and regioselectivity, gram-scale scalability, and application to synthesis of urolithin derivatives and 3--butylphthalide.

View Article and Find Full Text PDF

Adhesives That Contains Ionic Liquids Segment: From Synthesis to Applications.

Macromol Rapid Commun

March 2025

Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.

As technology has developed by leaps and bounds over decades, the development of high-performance supramolecular adhesives has become crucial in both scientific and industrial fields. Ionic liquids (ILs)-based adhesives, containing ILs segment, utilizing ILs chemical structure as either the primary adhesive component or key functional group, have materialized as a highly transformative subject matter for cutting-edge and emerging applications. Rational adhesive design strategies, carefully balancing adhesion and cohesion behavior, are also required when constructing ILs-based adhesives.

View Article and Find Full Text PDF

Mechanistic insights into the stereocontrolling non-covalent π interactions in Pd-catalyzed redox-relay Heck arylation reaction.

Chem Commun (Camb)

March 2025

Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

The mechanism and origin of enantioselectivity of palladium-catalyzed redox-relay Heck arylation of 1,1-disubstituted homoallylic alcohols were investigated computationally. The computed mechanism consists of an initial migratory insertion, followed by a β-hydride elimination, and a subsequent re-insertion/elimination process to yield an enol intermediate, which tautomerizes to the more stable carbonyl product. Results from DFT calculations suggest that the key enantiodetermining step is the reinsertion of an alkene intermediate into the Pd-H bond, but not the initial migratory insertion of the substrate into the Pd-Aryl species.

View Article and Find Full Text PDF

Fluoride is ubiquitously present in the natural environment, and its excessive levels can pose serious threats to human health and industrial production. Among various fluoride pollution control methods, adsorption is recognized for its optimal cost-effectiveness and adaptability. The mechanism of fluoride adsorption and the adsorption capacities of various modified adsorbents have been comparatively analyzed:natural minerals, biomass materials, metal oxides, and several emerging types of adsorbents, among which metal-based adsorbents show the best performance.

View Article and Find Full Text PDF

Four 2,9-aryl substituted 6,13-bis(triisopropylsilylethynyl)pentacene derivatives were synthesized as sonosensitizers. Their extensive delocalized π-electron conjugation system facilitated the generation of reactive oxygen species (ROS) under ultrasound irradiation. Therapeutic results validate that the as-prepared compounds have significant advantages in sonodynamic therapy.

View Article and Find Full Text PDF