275,262 results match your criteria: "School of Chemical Engineering & Technology[Affiliation]"

Defect-rich Co/N-doped hierarchically porous carbons for rapid and highly efficient adsorption of organophosphorus pesticides from environmental water.

J Chromatogr A

January 2025

School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Accurate Separation and Analysis for Complex Matrix of Zhengzhou City, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety and Nutrition, Zhengzhou 450001, PR China. Electronic address:

Organophosphorus pesticides (OPPs) severely pollute various environmental water due to their excessive use, and it is extremely urgent to develop novel adsorbents with high adsorption capacities, rapid removal rate and easily recovery for the removal of OPPs. In this study, defect-rich Co/N-doped hierarchically porous carbons (Co/N-DHPCs) were constructed by pyrolyzing acid-etched ZIF-67 precursor. The developed Co/N-DHPCs possessed rich defects, well-developed hierarchical porous structure, high specific surface area and excellent magnetic property, and exhibited large adsorption capacities of 103.

View Article and Find Full Text PDF

Global, regional and national burden of neuroblastoma and other peripheral nervous system tumors, 1990 to 2021 and predictions to 2035: visualizing epidemiological characteristics based on GBD 2021.

Neoplasia

January 2025

Department of Clinical Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, PR China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, PR China; Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya 572000, PR China. Electronic address:

Background: Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children, accounting for >15 % of cancer-related deaths in children. We analyzed the epidemiological statistical indicators of neuroblastoma and other peripheral nervous system tumors patients from 1990 to 2021 in Global Burden of Disease (GBD) 2021 database, aiming to provide valuable insights for public health interventions and clinical practices.

Methods: Based on the GBD 2021 database, this study analyzed the incidence, mortality, prevalence, and Disability-Adjusted Life-Years (DALYs) of neuroblastoma and other peripheral nervous system tumors from 1990 to 2021, stratified by sociodemographic development index (SDI) and geographic regions.

View Article and Find Full Text PDF

Construction of P450 scaffold biocatalysts for the biodegradation of five chloroanilines.

J Hazard Mater

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266071, China. Electronic address:

Chloroanilines represent a class of persistent and highly toxic environmental pollutants, posing significant challenges for green remediation strategies. While P450BM3 monooxygenases are renowned for their ability to catalyze the monooxidation of inert C-H bonds, costly NAD(P)H and complex electron transport systems required for P450BM3 catalysis limit their practical applications. This study pioneers the development of innovative artificial biocatalysts by strategically engineering the active site of P450BM3.

View Article and Find Full Text PDF

A library comprising twenty-four isosteric derivatives of celecoxib substituted with carboxylic acid (labeled as 5a-5x), was synthesized and characterized through H NMR, C NMR, HRMS, and elemental analysis. Molecular docking studies revealed that all compounds successfully docked into the binding pocket of COX-2, and the introduction of carboxyl group enhances the interaction between the derivatives and COX-2. The compounds were further evaluated for cell toxicity, and in vitro anti-inflammatory activity.

View Article and Find Full Text PDF

Print-Light-Synthesis of ruthenium oxide thin film electrodes for electrochemical sensing applications.

Bioelectrochemistry

January 2025

University of Bologna, Department of Industrial Chemistry "Toso Montanari", Center of Chemical Catalysis-C(3), Via Piero Gobetti 85, 40129 Bologna, Italy. Electronic address:

Print-Light-Synthesis (PLS) combines the inkjet printing of a ruthenium precursor ink with the simultaneous photo-induced generation of ruthenium oxide films. During PLS, inkjet-printing generates on conductive as well as insulating substrates micrometer-thin reaction volumes that contain with high precision defined precursor loadings. Upon direct UV light irradiation, the Ru precursor converts to RuO while all other ink components escape in the gas phase.

View Article and Find Full Text PDF

As one of the top emitters of methane (CH), China must take action to achieve its carbon neutrality goal. Programs to reduce CH emissions would benefit from the establishment of the China Certified Emission Reduction (CCER) trading market. However, studies investigating the impact of the CCER trading market on CH reduction remain limited.

View Article and Find Full Text PDF

This study explored large-scale protein extraction from oat hulls using two hydrodynamic cavitation (HDC) devices, assessing extraction efficiency and protein nutritional qualities. The extraction methods HDC 50 (NaOH) and HDC 20 (NaOH) were shown to be 10.8 and 3.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.

View Article and Find Full Text PDF

Single-crystal Au(111), renowned for its chemically inert surface, long-range "herringbone" reconstruction, and high electrical conductivity, has long served as an exemplary template in diverse fields, , crystal epitaxy, electronics, and electrocatalysis. However, commercial Au(111) products are high-priced and limited to centimeter sizes, largely restricting their broad applications. Herein, a low-cost, high-reproducible method is developed to produce 4 in.

View Article and Find Full Text PDF

Precision Metal Nanoclusters Meet Proteins: Crafting Next-Gen Hybrid Materials.

ACS Nano

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.

View Article and Find Full Text PDF

Chalcogen Substitution-Modulated Molecule-Electrode Coupling in Single-Molecule Junctions.

Langmuir

January 2025

Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Zhejiang, Hangzhou 310018, China.

Molecule-electrode interfaces play a pivotal role in defining the electron transport properties of molecular electronic devices. While extensive research has concentrated on optimizing molecule-electrode coupling (MEC) involving electrode materials and molecular anchoring groups, the role of the molecular backbone structure in modulating MEC is equally vital. Additionally, it is known that the incorporation of heteroatoms into the molecular backbone notably influences factors such as energy levels and conductive characteristics.

View Article and Find Full Text PDF

Salt-welding strategy for the design of repairable impact-resistant and wear-resistant hydrogels.

Sci Adv

January 2025

School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.

Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.

View Article and Find Full Text PDF

Regioselective Suzuki-Miyarua Cross-Coupling for Substituted 2,4-Dibromopyridines Catalyzed by -Symmetric Tripalladium Clusters.

J Org Chem

January 2025

Department of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, Liaocheng University, Liaocheng 252059, China.

Multipalladium clusters possess peculiar structures and synergistic effects for reactivity and selectivity. Herein, -symmetric tripalladium clusters (, 0.5 mol %) afford C-regioselective SMCC of 2,4-dibromopyridine with phenylboronic acids or pinacol esters (C:C up to 98:1), in contrast to Pd(OAc) in ligand-free conditions.

View Article and Find Full Text PDF

Background: MRI offers quantification of proton density fat fraction (PDFF) and tissue characteristics with T1 mapping. The influence of age, sex, and the potential confounding effects of fat on T1 values in skeletal muscle in healthy adults are insufficiently known.

Purpose: To determine the accuracy and repeatability of a saturation-recovery chemical-shift encoded multiparametric approach (SR-CSE) for quantification of T1 and muscle fat content, and establish normative values (age, sex) from a healthy cohort.

View Article and Find Full Text PDF

Adsorption behaviors are typically examined through adsorption isotherms, which measure the average adsorption amount as a function of partial pressure or time. However, this method is incapable of identifying inhomogeneities across the adsorbent, which may occur in the presence of strong intermolecular interactions of the adsorbate. In this study, we visualize the adsorption of molecular iodine (I) in the metal-organic framework material MFM-300(Sc) using high-resolution scanning transmission electron microscopy (STEM).

View Article and Find Full Text PDF

The ligninolytic catalytic network reveals the importance of auxiliary enzymes in lignin biocatalysts.

Proc Natl Acad Sci U S A

January 2025

Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China.

Lignin degradation by biocatalysts is a key strategy to develop a plant-based sustainable carbon economy and thus alleviate global climate change. This process involves synergy between ligninases and auxiliary enzymes. However, auxiliary enzymes within secretomes, which are composed of thousands of enzymes, remain enigmatic, although several ligninolytic enzymes have been well characterized.

View Article and Find Full Text PDF

The crowded bacterial cytoplasm is composed of biomolecules that span several orders of magnitude in size and electrical charge. This complexity has been proposed as the source of the rich spatial organization and apparent anomalous diffusion of intracellular components, although this has not been tested directly. Here, we use biplane microscopy to track the 3D motion of self-assembled bacterial genetically encoded multimeric nanoparticles (bGEMs) with tunable size (20 to 50 nm) and charge (-3,240 to +2,700 e) in live cells.

View Article and Find Full Text PDF

Metalgel Fiber with Excellent Electrical and Mechanical Properties.

ACS Appl Mater Interfaces

January 2025

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.

View Article and Find Full Text PDF

Endoplasmic Reticulum-Targeted Polymer-Manganese Nanocomplexes for Tumor Immunotherapy.

ACS Nano

January 2025

Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China.

Manganese ions (Mn) are an immune activator that enhances the activation of both cGAS and STING proteins. The STING signaling activation and subsequential immune responses are predominantly associated with endoplasmic reticulum (ER). Therefore, ER targeting of Mn in the subcellular compartments would promote the activation of STING signaling pathways.

View Article and Find Full Text PDF

Inulin Dehydration to 5-HMF in Deep Eutectic Solvents Catalyzed by Acidic Ionic Liquids Under Mild Conditions.

ChemSusChem

January 2025

Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università degli Studi di Palermo, Viale delle Scienze, Ed. 17, 90128, Palermo, Italia.

Valorization of carbohydrate-rich biomass by conversion into industrially relevant products is at the forefront of research in sustainable chemistry. In this work, we studied the inulin conversion into 5-hydroxymethylfurfural, in deep eutectic solvents, in the presence of acidic task-specific ionic liquids as catalysts. We employed aliphatic and aromatic ionic liquids as catalysts, and choline chloride-based deep eutectic solvents bearing glycols or carboxylic acids, as solvents.

View Article and Find Full Text PDF

The photocatalytic conversion of CO into products such as CH and CH poses a significant challenge due to the lengthy reaction steps and the high energy barrier involved. In this study, both benzothiadiazole (BTD) and hydroxyl groups (-OH) are introduced into cobalt-based polymerized porphyrinic network (PPN) through a C-C coupling reaction. This modification of orbital energy levels that strengthens the ability of gain electrons and facilitates the charge transfer in PPN.

View Article and Find Full Text PDF

Exploration of new π-conjugated building blocks for construction of supramolecular polymers is at the forefront of self-assembly. Herein, we incorporate a highly planar anthanthrene skeleton into the design of two supramolecular monomers 1 and 2. Their supramolecular polymerization have been comprehensively investigated by spectroscopic studies.

View Article and Find Full Text PDF

Background: This study aimed to elucidate the transport mechanism of lycopene-loaded nanomicelles to improve intestinal absorption of lycopene. The interactive mechanism between lycopene and nanomicelles was investigated through isothermal titration calorimetry (ITC). The cytotoxicity, cellular uptake, endocytosis, and intracellular transport pathways of lycopene-loaded nanomicelles were investigated using the Caco-2 cell model.

View Article and Find Full Text PDF

Synthesis of Benzazepines Bearing Three Contiguous Carbon Stereocenters through Pd(II)-Catalyzed [3 + 2] Cycloaddition of -Aryl Nitrones with Allenoates.

J Org Chem

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.

A cascade reaction of Pd(II)/dppben-catalyzed [3 + 2] cycloaddition of -aryl nitrones with allenoates and sequential reduction has been developed for the synthesis of functionalized benzazepines bearing three contiguous carbon stereocenters in moderate to good yields ranging from 15 to 82% and high diastereoselectivity. The obtained benzazepines could be converted into various benzazepine scaffolds, and an estrone-derived benzazepine scaffold was prepared over four steps from estrone. More importantly, chiral benzazepine bearing three contiguous carbon stereocenters could be obtained in 88% ee value with chiral auxiliary.

View Article and Find Full Text PDF

Metal-organic complexes with long afterglow luminescence have attracted extensive attention due to potential applications in display, sensing and information security. However, most of the metal-organic complex long afterglow materials reported so far are limited to the use of UV light as the excitation source, and the ambiguity of the structure-activity relationship makes the development of metal-organic complexes extremely limited. Herein, a series of metal-organic complexes with ultralong emission lifetime is constructed by coordination assembly of Zn(II) with three isomers.

View Article and Find Full Text PDF