273,014 results match your criteria: "School of Chemical Engineering & Food Science[Affiliation]"
Chemistry
January 2025
Shihezi University, School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, North 4th Road, 832003, Shihezi, CHINA.
An N,N,N-type Cu(Ⅱ) complex-catalyzed desaturation method for converting alcohols, ketones, lactones, and lactams to their α,β-unsaturated carbonyl compounds is reported. The dehydrogenation reaction can be conducted with a green terminal oxidant O2 without requiring strong acid/base or stoichiometric oxidants. The Cu(Ⅱ) complex/TEMPO/O2 system uses a non-noble catalyst, and a green terminal oxidant as well as demonstrates high activity and functional group tolerance.
View Article and Find Full Text PDFJ Nanobiotechnology
January 2025
Department of Laboratory Medicine Center, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Medical University, Qingyuan, Guangdong, China.
Monitoring wound infection and providing appropriate treatment are crucial for achieving favorable outcomes. However, the time-consuming nature of laboratory culture tests may delay timely intervention. To tackle this challenge, a simple yet effective HDG hydrogel, composed of hydrogen peroxide (H₂O₂), dopamine, and GelMA polymer, is developed for the ultrafast detection and treatment of Staphylococcus aureus (SA) infections.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, Geneva CH-1211, Switzerland.
Moth-eye nanostructures, known for their biological antireflective properties, are formed by a self-assembly mechanism. Understanding and replicating this mechanism on artificial surfaces open avenues for the engineering of bioinspired multifunctional nanomaterials. Analysis of corneal nanocoatings from butterflies of the genus reveals a variety of nanostructures with uniformly strong antiwetting properties accompanied by varying antireflective functionalities.
View Article and Find Full Text PDFNature
January 2025
School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, China.
Lithium (Li) metal batteries (LMBs) are promising for high-energy-density rechargeable batteries. However, Li dendrites formed by the reaction between highly active Li and non-aqueous electrolytes lead to safety concerns and rapid capacity decay. Developing a reliable solid-electrolyte interphase is critical for realizing high-rate and long-life LMBs, but remains technically challenging.
View Article and Find Full Text PDFNature
January 2025
Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China.
Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.
View Article and Find Full Text PDFNat Chem Biol
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics and School of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
Artificial metalloenzymes (ArMs) integrated within whole cells have emerged as promising catalysts; however, their sensitivity to metal centers remains a systematic challenge, resulting in diminished activity and turnover. Here we address this issue by inducing in cellulo liquid-liquid phase separation through a self-labeling fusion protein, HaloTag-SNAPTag. This strategy creates membraneless, isolated liquid condensates within Escherichia coli as protective compartments for the assembly of ArMs using the same fusion protein.
View Article and Find Full Text PDFSci Rep
January 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
Antimicrobial resistance (AMR) is a major cause of death worldwide, with 1.27 M direct deaths from bacterial drug-resistant infections as of 2019. Dissemination of multidrug-resistant (MDR) bacteria in the environment, in conjunction with pharmapollution by active pharmaceutical ingredients (APIs), create and foster an environmental reservoir of AMR.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland.
Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
Direct carbonylation of CH to CHCOOH provides a promising pathway for upgrading of natural gas to transportable liquid chemicals, in which high-efficiency CH activation and controllable C-C coupling are both critical but challenging. Herein, we report that highly efficient photo-driven carbonylation of CH with CO and O to CHCOOH is achieved over MoS-confined Rh-Zn atomic-pair in conjunction with TiO. It delivers a high CHCOOH productivity of 152.
View Article and Find Full Text PDFNat Commun
January 2025
Gleiberman Head and Neck Cancer Center, Moores Cancer Center, University of California San Diego Health, La Jolla, CA, 92037, USA.
Tumor initiation represents the first step in tumorigenesis during which normal progenitor cells undergo cell fate transition to cancer. Capturing this process as it occurs in vivo, however, remains elusive. Here we employ spatiotemporally controlled oncogene activation and tumor suppressor inhibition together with multiomics to unveil the processes underlying oral epithelial progenitor cell reprogramming into tumor initiating cells at single cell resolution.
View Article and Find Full Text PDFNat Commun
January 2025
Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing, China.
Helicene-shaped molecules are compelling chemical structures with unique twisted helical chirality and remarkable properties. Although progress occurs in the catalytic asymmetric synthesis of helicene (-like) molecules, the enantioselective synthesis of multiple helicenes, especially four or higher helicity, is still challenging and has yet to be achieved. Herein, we report an organocatalytic [4 + 2] cycloadditions to achieve double S-shaped quadruple helicene-like molecules with high enantioselectivity (up to 96% e.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
Rafet Kayış Faculty of Engineering, Department of Genetics and Bioengineering, Alanya Alaaddin Keykubat University, Antalya, Turkey.
Purpose: The incidence of breast cancer has been increasing in recent years, and monotherapy approaches are not sufficient alone in the treatment of breast cancer. In the combined therapy approach, combining two or three different agents in lower doses can mitigate the side effects on living cells and tissues caused by high doses of chemical agents used alone. ABT-263 (navitoclax), a clinically tested Bcl-2 family protein inhibitor, has shown limited success in clinical trials due to the development of resistance to monotherapy in breast cancer cells.
View Article and Find Full Text PDFMikrochim Acta
January 2025
School of Material Science and Engineering, Henan University of Technology Zhengzhou, Henan, 450001, China.
A simple, fast, and cost-effective colorimetric nitrite (NO) sensor based on ZIF-67-derived CoO nanocomposite (ZCo-2 NC) structure has been developed. The prepared colorimetric sensor (ZCo-2 NC) was employed to sensitively detect NO in drinking water system by the exhibition of promising peroxidase-mimicking nanozyme-like features. The sensor manifest well-determined sensing response with excellent linear and wide range of NO sensitivity (0.
View Article and Find Full Text PDFCurr Top Med Chem
January 2025
Department of Pharmacy, Panipat Institute of Engineering & Technology (PIET) Samalkha, Panipat, Haryana-132102, India.
Phenyl amino pyrimidine attracts researchers due to its versatile scaffold and medicinal significance. This significant moiety present in the Imatinib contributed to medicinal chemistry. In this manuscript, we reviewed various derivatives of Imatinib containing 2-phenylaminopyrimidine, which has a variety of roles, especially in the anti-cancer category.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Engineering Research Centre for Waste Oil Recovery Technology and Equipment, Ministry Education, Chongqing Technology and Business University, Chongqing, 400067, China.
In recent years, it has become widely acknowledged that heavy metals are often present in oil-contaminated sites. This study utilized three specific types of microorganisms with different functions to construct a composite bacterial consortium for treating lubricant-Cr(VI) composite pollutants. The selected strains were Lysinbacillus fusiformis and Bacillus tropicus.
View Article and Find Full Text PDFInorg Chem
January 2025
School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
Porphyrins bearing the unique 18π electron tetrapyrrolic macrocycles exhibit interesting photophysical and photochemical properties and have been considered as promising ligands for the construction of functionalized metal-organic frameworks (MOFs). The combination of porphyrin-type ligands with lanthanide metals featured with diverse coordination environments to realize the novel functions as well as the diversity of the MOF is thus attractive but challenging. Herein, an unprecedented porphyrin-based samarium MOF (Sm-BCPP) composed of a 5,10-bis(4-carboxyphenyl)-10,20-diphenyl porphyrin (HBCPP) ligand and samarium-formed one-dimensional clusters has been constructed via a solvothermal approach, and the synthesized Sm-BCPP has excellent chemical stabilities, exhibiting red luminescence.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
Eutectic solvents (ESs) have shown great efficiency on increasing the solubility, stability, and bioactivity of active pharmaceutical ingredients (APIs) in recent research studies. Curcumin is an important API driven from natural plants, which displayed a series of biofunctions like antibacterials, anti-inflammatory, and anticancer activities etc. However, its poor water solubility and stability hindered its further clinic application.
View Article and Find Full Text PDFACS Nano
January 2025
Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P. R. China.
The self-assembly of molecules into highly ordered architectures is a ubiquitous and natural process, wherein molecules spontaneously organize into large structures to perform diverse functions. Drawing inspiration from the formation of natural nanostructures, cell-mediated self-assembly has been developed to create functional assemblies both inside and outside living cells. These techniques have been employed to regulate the cellular world by leveraging the dynamic intracellular and extracellular microenvironment.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Ningbo Institute of Materials Technology and Engineering CAS: Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering, Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, CHINA.
High-temperature phosphorescence (HTP) materials have attracted considerable attention owing to their expanded application prospects, whereas they still suffer from severe deactivation in polar media, limiting their reliability and utility. Here, we present an efficient multivalent assembly strategy to achieve high-temperature liquid-phase phosphorescence (HTLP). The supramolecular assembly of multivalent modules leads to extremely robust hydrogen-bonding networks, which firmly immobilize the organic phosphors and protect triplet excitons from annihilation in high-temperature polar media, resulting in excellent HTLP emission.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, 800 Dongchuan Road, 200240, Shanghai, CHINA.
Covalent adaptable networks (CANs), a novel class of crosslinked polymers with dynamic covalent bonds, have gained significant attention for combining the durability of thermosets with the reprocessability of thermoplastics, making them promising for emerging applications. Here, we report the first example of poly[2]rotaxane-type CANs (PRCANs), in which oligo[2]rotaxane backbones characterized by densely packed mechanical bonds, are cross-linked through dynamic C-N bond. Oligo[2]rotaxane backbones could guarantee the mechanical properties of CANs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
Diatomic catalysts featuring a tunable structure and synergetic effects hold great promise for various reactions. However, their precise construction with specific configurations and diverse metal combinations is still challenging. Here, a selective etching and metal ion adsorption strategy is proposed to accurately assign a second metal atom (M) geminal to the single atom site (M-N) for constructing diatomic sites (e.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Restorative Dentistry, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.
Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).
Eur J Med Chem
January 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, China. Electronic address:
ACS Appl Mater Interfaces
January 2025
Energy and Process Engineering Division, School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, 2 George Street, Brisbane City, Queensland 4001, Australia.
The strategic design and fabrication of efficient electrocatalysts are pivotal for advancing the field of electrochemical water splitting (EWS). To enhance EWS performance, integrating non-noble transition metal catalysts through a cooperative double metal incorporation strategy is important and offers a compelling alternative to conventional precious metal-based materials. This study introduces a novel, straightforward, single-step process for fabricating a bimetallic MoCo catalyst integrated within a three-dimensional (3D) nanoporous network of N, P-doped carbon nitride derived from a self-contained precursor.
View Article and Find Full Text PDFJ Toxicol Sci
January 2025
Department of Creative engineering, National Institute of Technology, Ariake College.
The indispensability of biometals nickel, copper, and selenium in pharmaceutical, agricultural, and other industrial applications, coupled with their release from mining processes, has made them potent environmental contaminants, especially when present in aquatic ecosystems at levels above the essential range. The toxicity of these biometals in fish embryogenesis, including their toxicity levels, was studied using medaka embryos. Test solutions (0.
View Article and Find Full Text PDF