7,618 results match your criteria: "School of Biological Science.[Affiliation]"

Turning Waste into Treasure: Functionalized Biomass-Derived Carbon Dots for Superselective Visualization and Eradication of Gram-Positive Bacteria.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China.

Gram-positive bacteria pose significant threats to human health, necessitating the development of targeted bacterial detection and eradication strategies. Nevertheless, current approaches often suffer from poor targeting specificity. Herein, the study utilizes purple rice lixivium to synthesize biomass carbon dots (termed BCDs) with wheat germ agglutinin-like residues for precisely targeting Gram-positive bacteria.

View Article and Find Full Text PDF

Background: High-intensity endurance training induces specific cardiac adaptations, often observed through electrocardiographic (ECG) changes. This study investigated the prevalence of ECG abnormalities in national-level Australian triathletes compared to sedentary controls.

Methods: A cross-sectional observational study was conducted involving 22 triathletes and 7 sedentary controls.

View Article and Find Full Text PDF

Bioactive Angucyclines/Angucyclinones Discovered from 1965 to 2023.

Mar Drugs

January 2025

School of Biological Science and Technology, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, China.

Angucyclines/angucyclinones, a class of polyketides with diverse chemical structures, display various bioactivities including antibacterial or antifungal, anticancer, anti-neuroinflammatory, and anti-α-glucosidase activities. Marine and terrestrial microorganisms have made significant contributions to the discovery of bioactive angucyclines/angucyclinones. This review covers 283 bioactive angucyclines/angucyclinones discovered from 1965 to 2023, and the emphasis is on the biological origins, chemical structures, and biological activities of these interesting natural products.

View Article and Find Full Text PDF

Digital Melting Curve Analysis for Multiplex Quantification of Nucleic Acids on Droplet Digital PCR.

Biosensors (Basel)

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China.

We present a cost-effective and simple multiplex nucleic acid quantification method using droplet digital PCR (ddPCR) with digital melting curve analysis (MCA). This approach eliminates the need for complex fluorescent probe design, reducing both costs and dependence on fluorescence channels. We developed a convolutional neighborhood search algorithm to correct droplet displacement during heating, ensuring precise tracking and accurate extraction of melting curves.

View Article and Find Full Text PDF

Mechanically regulated microcarriers with stem cell loading for skin photoaging therapy.

Bioact Mater

April 2025

Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.

Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable of modulating stem cell differentiation to treat photoaged skin.

View Article and Find Full Text PDF

bFGF-Chitosan "brain glue" promotes functional recovery after cortical ischemic stroke.

Bioact Mater

April 2025

Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.

The mammalian brain has an extremely limited ability to regenerate lost neurons and to recover function following ischemic stroke. A biomaterial strategy of slowly-releasing various regeneration-promoting factors to activate endogenous neurogenesis represents a safe and practical neuronal replacement therapy. In this study, basic fibroblast growth factor (bFGF)-Chitosan gel is injected into the stroke cavity.

View Article and Find Full Text PDF

The role of disulfide bonds in L-arginine ameliorating the quality of low-salt sturgeon surimi gels induced by microwave: Increasing the diameter and fractal dimension of network.

Food Res Int

February 2025

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Bio-resources Key Laboratory of Shaanxi Province, School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; Quanzhou Marine Biotechnology Industry Research Institute, Quanzhou 362700, China. Electronic address:

The purpose of this study was to investigate the mechanism of enhancing gelling properties of low-salt surimi by utilizing the complementary advantages of L-arginine (L-Arg) and microwave (MW) from the perspective of gels' network characteristics. At MW 3 min, the diameters of protein filaments were increased from 0.015 μm to 0.

View Article and Find Full Text PDF

[Applications and prospects of graphene and its derivatives in bone repair].

Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi

January 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, P. R. China.

Objective: To summarize the latest research progress of graphene and its derivatives (GDs) in bone repair.

Methods: The relevant research literature at home and abroad in recent years was extensively accessed. The properties of GDs in bone repair materials, including mechanical properties, electrical conductivity, and antibacterial properties, were systematically summarized, and the unique advantages of GDs in material preparation, functionalization, and application, as well as the contributions and challenges to bone tissue engineering, were discussed.

View Article and Find Full Text PDF

Automatic path planning for pelvic fracture reduction with multi-degree-of-freedom.

Comput Methods Programs Biomed

January 2025

Department of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing, China.

Background And Objectives: Computer-assisted orthopedic surgical techniques and robotics has improved the therapeutic outcome of pelvic fracture reduction surgery. The preoperative reduction path is one of the prerequisites for robotic movement and an essential reference for manual operation. As the largest irregular bone with complicated morphology, the rotational motion of pelvic fracture fragments impacts the reduction process directly.

View Article and Find Full Text PDF

Dynamic spectrum-driven hierarchical learning network for polyp segmentation.

Med Image Anal

January 2025

Department of Computer and Data Science and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA.

Accurate automatic polyp segmentation in colonoscopy is crucial for the prompt prevention of colorectal cancer. However, the heterogeneous nature of polyps and differences in lighting and visibility conditions present significant challenges in achieving reliable and consistent segmentation across different cases. Therefore, this study proposes a novel dynamic spectrum-driven hierarchical learning model (DSHNet), the first to specifically leverage image frequency domain information to explore region-level salience differences among and within polyps for precise segmentation.

View Article and Find Full Text PDF

Five previously unreported 5-hydroxymethylfurfural (5-HMF) derivatives, including chinenfurfurals A () and B () as 5-HMF-citric acid hybrids and chinenfurfurals C-E (-) as 5-HMF oligomers, as well as four known analogues (-), were isolated from the fruits of a well-known Chinese herbal species . The structures of these furfural compounds were established by detailed analyses of spectroscopic data especially HRMS and NMR, and it is the first report of furfural type constituents from the title species. The anti-inflammatory property of them was further evaluated by testing their inhibition against the production of nitric oxide in lipopolysaccharide-activated murine RAW264.

View Article and Find Full Text PDF

ROS-differentiated release of Apelin-13 from hydrogel comprehensively treats myocardial ischemia-reperfusion injury.

J Control Release

January 2025

Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao, Nanjing 210009, China. Electronic address:

Treatment of myocardial ischemia-reperfusion (MI/R) injury still faces the lack of clinically approved drugs. Apelin-13 is a highly promising drug candidate of MI/R injury, but hampered by its extremely short half-life in plasma. This calls for efficient and smart delivering system for Apelin-13 delivery, but has not been reported.

View Article and Find Full Text PDF

Biomechanical effects of human-mobility aid interaction: A narrative review.

Gait Posture

January 2025

School of Engineering Medicine, Beihang University, Beijing, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China. Electronic address:

Background: The clinical benefits and widespread use of traditional mobility aids (such as canes, walking frames, wheeled walkers, etc.) have been hampered by improper use, fear of falling, and social stigma. Clarifying the biomechanical impacts of using mobility aids on users is fundamental to optimizing rehabilitation programs.

View Article and Find Full Text PDF

Dual-Locked Enzyme-Activatable Fluorescence Probes for Precise Bioimaging.

ACS Biomater Sci Eng

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 211189, China.

Real-time visualization of endogenous enzymes not only helps reveal the underlying biological principles but also provides pathological information for cancer/disease diagnosis and even treatment guidance. To this end, enzyme-activatable fluorescence probes are frequently fabricated that turn their fluorescence signals "on" exclusively at the enzyme-rich region, thus enabling noninvasive and real-time imaging of enzymes of interest at the molecular level with superior sensitivity and selectivity. However, in a complex biological context, commonly used single enzyme-activatable (i.

View Article and Find Full Text PDF

In vitro stretch modulates mitochondrial dynamics and energy metabolism to induce smooth muscle differentiation in mesenchymal stem cells.

FASEB J

January 2025

Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Beijing, China.

The smooth muscle cells (SMCs) located in the vascular media layer are continuously subjected to cyclic stretching perpendicular to the vessel wall and play a crucial role in vascular wall remodeling and blood pressure regulation. Mesenchymal stem cells (MSCs) are promising tools to differentiate into SMCs. Mechanical stretch loading offers an opportunity to guide the MSC-SMC differentiation and mechanical adaption for function regeneration of blood vessels.

View Article and Find Full Text PDF

Defect-Engineered Luminescent Nanozyme with Enhanced Phosphohydrolase Activity for Degradation and Dual-Mode Detection of Paraoxon.

Small

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

The excessive use of organophosphorus pesticides poses a substantial threat to both human health and the environment. Consequently, there is an urgent need for new methods that can quickly degrade and sensitively detect these compounds. A versatile nanozyme based on the biomimetic principle is an effective strategy to solve this problem.

View Article and Find Full Text PDF

Background: Food safety is a significant global study subject that is strongly intertwined with human life and well-being. The utilization of DNA-based methods for species identification is a valuable instrument in the field of food inspection and regulation. It is particularly significant for traceability purposes, as it enables the monitoring of a specific item at every level of the food chain regulation.

View Article and Find Full Text PDF

Benefit from public unlabeled data: A Frangi filter-based pretraining network for 3D cerebrovascular segmentation.

Med Image Anal

January 2025

School of Engineering Medicine and School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China; Key Laboratory of Big DataBased Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing, 100191, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China; National Key Laboratory of Kidney Diseases, Beijing, 100853, China. Electronic address:

Precise cerebrovascular segmentation in Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) data is crucial for computer-aided clinical diagnosis. The sparse distribution of cerebrovascular structures within TOF-MRA images often results in high costs for manual data labeling. Leveraging unlabeled TOF-MRA data can significantly enhance model performance.

View Article and Find Full Text PDF

A Schiff-base-modified Cu nanocluster with redox dual-catalytic sites and fluorescence sensing for the degradation and detection of atrazine.

Mater Horiz

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China.

Atrazine is a widely used and heavily contaminating pesticide. In this work, we designed and synthesized a versatile catalyst for the degradation and fluorescent detection of atrazine. This catalyst consists of Cu clusters modified by a Schiff base.

View Article and Find Full Text PDF

In recent years, antimicrobial peptides (AMPs) have emerged as a potent weapon against the growing threat of antibiotic resistance. Among AMPs, the ones containing tryptophan (W) and arginine (R) exhibit enhanced antimicrobial properties, benefiting from the unique physicochemical features of the two amino acids. Herein, we designed three hexapeptides, including WR, DWR (D-isomer), and RF, derived from the original sequence, RWWRWW-NH2 (RW).

View Article and Find Full Text PDF

Extracellular Matrix-Inspired Dendrimer Nanogels Encapsulating Cyclophosphamide for Systemic Sclerosis Treatment.

ACS Nano

January 2025

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Cyclophosphamide has a certain therapeutic effect on treating systemic sclerosis (SSc), while difficulties exist in controlling severe systematic side effects and enhancing targeting capacity. Here, inspired from the natural extracellular matrix composition, we propose a cyclophosphamide-encapsulated nanogel based on dendritic polymers polyamidoamine (PAMAM) for SSc treatment. We combine bovine serum albumin and generation 5 (G5) PAMAM dendrimers with polyphenol modification to obtain nanogels featured with antioxidant and anti-inflammatory effects.

View Article and Find Full Text PDF

L-histidine makes Ni 'visible' for plant signalling systems: Shading the light on Ni-induced Ca and redox signalling in plants.

Plant Physiol Biochem

October 2024

International Research Centre for Environmental Membrane Biology and Department of Horticulture, Foshan University, Foshan, China; V.F. Kuprevich Institute of Experimental Botany, National Academy of Sciences of Belarus, Minsk, Belarus. Electronic address:

Nickel is both an important nutrient and an ecotoxicant for plants. Organic ligands, such as L-histidine (His), play a key role in Ni detoxification. Here, we show that His (added together with 0.

View Article and Find Full Text PDF

The regular workshops held by the Center for Alternatives to Animal Testing (CAAT) on biology-inspired microphysiological systems (MPS) taking place every four years, have become a reliable measure to assess fundamental scientific, industrial and regulatory trends for translational science in the MPS-field from a bird's eye view. The 2023 workshop participants at that time concluded that the technology as used within academia has matured significantly, underlined by the broad use of MPS and the steadily increasing number of high quality research publications - yet, broad industry adoption of MPS has been slow, despite strong interest. Academic research using MPS primarily aims to accurately recapitulate human biology in MPS-based organ models in areas where traditional models have been lacking key elements of human physiology, thereby enabling breakthrough discoveries for life sciences.

View Article and Find Full Text PDF