22 results match your criteria: "School of Biological Science and Medical Engineering Southeast University Nanjing China.[Affiliation]"

Chinese medicine is identified as a candidate for wound healing. Attempts in this field tend to develop efficient dosage forms for delivering Chinese medicine with low side effects. In this paper, we proposed novel photothermal responsive porous hollow microneedles (PRPH-MNs) as a versatile Chinese medicine delivery system for efficient antibacterial wound treatment.

View Article and Find Full Text PDF

Oral disease is a severe healthcare challenge that diminishes people's quality of life. Functional hydrogels with suitable biodegradability, biocompatibility, and tunable mechanical properties have attracted remarkable interest and have been developed for treating oral diseases. In this review, we present up-to-date research on hydrogels for the management of dental caries, endodontics, periapical periodontitis, and periodontitis, depending on the progression of dental diseases.

View Article and Find Full Text PDF

In recent years, organs-on-chips have been arousing great interest for their bionic and stable construction of crucial human organs in vitro. Compared with traditional animal models and two-dimensional cell models, organs-on-chips could not only overcome the limitations of species difference and poor predict ability but also be capable of reappearing the complex cell-cell interaction, tissue interface, biofluid and other physiological conditions of humans. Therefore, organs-on-chips have been regarded as promising and powerful tools in diverse fields such as biology, chemistry, medicine and so on.

View Article and Find Full Text PDF

The islet of Langerhans, functioning as a "mini organ", plays a vital role in regulating endocrine activities due to its intricate structure. Dysfunction in these islets is closely associated with the development of diabetes mellitus (DM). To offer valuable insights for DM research and treatment, various approaches have been proposed to create artificial islets or islet organoids with high similarity to natural islets, under the collaborative effort of biologists, clinical physicians, and biomedical engineers.

View Article and Find Full Text PDF

Conductive hydrogels have attracted copious attention owing to their grateful performances, such as similarity to biological tissues, compliance, conductivity and biocompatibility. A diversity of conductive hydrogels have been developed and showed versatile potentials in biomedical applications. In this review, we highlight the recent advances in conductive hydrogels, involving the various types and functionalities of conductive hydrogels as well as their applications in biomedical fields.

View Article and Find Full Text PDF

Hyaluronic acid (HA) is an attractive extracellular matrix-derived polymer. The related HA-based hydrogels are emerging to be the hotspots in the cutting edge of biomaterials. The continuous sights concentrate on exploring modification methods and crosslinking strategies to promote the advancement of HA-based hydrogels with enhanced physical/chemical properties and enriched biological performance.

View Article and Find Full Text PDF

Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation.

View Article and Find Full Text PDF

Gene therapy, a medical approach that involves the correction or replacement of defective and abnormal genes, plays an essential role in the treatment of complex and refractory diseases, such as hereditary diseases, cancer, and rheumatic immune diseases. Nucleic acids alone do not easily enter the target cells due to their easy degradation in vivo and the structure of the target cell membranes. The introduction of genes into biological cells is often dependent on gene delivery vectors, such as adenoviral vectors, which are commonly used in gene therapy.

View Article and Find Full Text PDF

Micro- and nanorobots (MNRs) propelled by external actuations have broad potential in biomedical applications. Among the numerous external excitations, ultrasound (US) features outstanding practical significance with merits of its noninvasiveness, tunability, penetrability, and biocompatibility. Attributing to various physiochemical effects of US, it can propel the MNRs with sophisticated structures through asymmetric acoustic streaming, bubble oscillation, and so on.

View Article and Find Full Text PDF

Magnetic photonic crystals (PhCs), as a representative responsive structural color material, have attracted increasing research focus due to merits such as brilliant refraction colors, instant responsiveness, and excellent manipuility, thus having been widely applied for color displaying, three-dimensional printing, sensing, and so on. Featured with traits such as contactless manner, flexible orientations, and adjustable intensity of external magnetism, magnetic PhCs have shown great superiority especially in the field of biomedical applications such as bioimaging and auxiliary clinical diagnosis. In this review, we summarize the current advancements of magnetic PhCs.

View Article and Find Full Text PDF

Wound infections continuously impose a huge economic and social burden on public healthcare. Despite the effective treatment of bacteria-infected wounds after using traditional antibiotics, the misuse of antibiotics usually causes the spread of bacterial resistance and decreases therapeutic outcomes. Therefore, the development of efficient antibacterial agents is urgently needed.

View Article and Find Full Text PDF

Heart diseases, especially cardiovascular diseases, have brought heavy burden on society for their high morbidity and mortality. In clinical, heart transplantation is recognized as an effective strategy to rescue the lives of patients, while it may suffer from lack of donors and possible immune responses. In view of this, tremendous efforts have been devoted to developing alternative strategies to recover the function and promote the regeneration of cardiac tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Wearable sensors are enhancing daily health care through improved comfort, sensitivity, reliability, and user-friendliness, enabling better monitoring and early disease detection.
  • Microneedle structures in these sensors allow for better access to bodily fluids, boosting the detection of subtle health signals and serving as sensing units that capture, convert, and transmit data.
  • The paper discusses the potential of microneedle-based sensors in monitoring biophysical signals and biochemical analytes, while also exploring innovative power sources like triboelectric and piezoelectric effects, and considers their future implications.
View Article and Find Full Text PDF

Responsive hydrogel microfibers can realize multiple controllable changes in shapes or properties under the stimulation of the surrounding environment, and are called as intelligent biomaterials. Recently, these responsive hydrogel microfibers have been proved to possess significant biomedical values, and remarkable progress has been achieved in biomedical engineering applications, including drug delivery, biosensors and clinical therapy, etc. In this review, the latest research progress and application prospects of responsive hydrogel microfibers in biomedical engineering are summarized.

View Article and Find Full Text PDF

Infertility is a rising global health issue with a far-reaching impact on the socioeconomic livelihoods. As there are highly complex causes of male and female infertility, it is highly desired to promote and maintain reproductive health by the integration of advanced technologies. Biomedical engineering, a mature technology applied in the fields of biology and health care, has emerged as a powerful tool in the diagnosis and treatment of infertility.

View Article and Find Full Text PDF

Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health.

View Article and Find Full Text PDF

Silk fibroin hydrogels occupy an essential position in the biomedical field due to their remarkable biological properties, excellent mechanical properties, flexible processing properties, as well as abundant sources and low cost. Herein, we introduce the unique structures and physicochemical characteristics of silk fibroin, including mechanical properties, biocompatibility, and biodegradability. Then, various preparation strategies of silk fibroin hydrogels are summarized, which can be divided into physical cross-linking and chemical cross-linking.

View Article and Find Full Text PDF

Decellularized scaffolds have a demonstrated value in liver tissue engineering. Challenges in this area are focused on effectively eliminating the biological rejection of scaffolds and finding a suitable liver cell source. Here, inspired by the natural microstructure of hepatic lobules, we present a novel decellularized celery-derived scaffold cultured with human-induced pluripotent stem cell-derived hepatocytes (hiPSC-Heps) bioengineering liver tissue construction.

View Article and Find Full Text PDF
Article Synopsis
  • Colonies are fundamental to coral reefs, yet their growth patterns and regulatory mechanisms are not fully understood, prompting this study.
  • We utilized high-resolution micro-computed tomography to analyze 25 coral samples, mapping their skeletons and growth structures to explore different coral species' characteristics and growth strategies.
  • The findings enhance our understanding of coral growth and diversity, offering valuable data for future research on reef formation under various environmental conditions.
View Article and Find Full Text PDF

Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 individuals by whole-genome resequencing strategy.

View Article and Find Full Text PDF

Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them.

View Article and Find Full Text PDF

Analysis of gene expression data by clustering and visualizing played a central role in obtaining biological knowledge. Here, we used Pearson's correlation coefficient of multiple-cumulative probabilities (PCC-MCP) of genes to define the similarity of gene expression behaviors. To answer the challenge of the high-dimensional MCPs, we used icc-cluster, a clustering algorithm that obtained solutions by iterating clustering centers, with PCC-MCP to group genes.

View Article and Find Full Text PDF