1,217 results match your criteria: "School of Aerospace and Mechanical Engineering and Bioengineering Center; University of Oklahoma[Affiliation]"

Proteomics-on-a-Chip - Microfluidics meets proteomics.

Biosens Bioelectron

January 2025

The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, PR China. Electronic address:

Proteomics provides an understanding of biological systems by enabling the detailed study of protein expression profiles, which is crucial for early disease diagnosis. Microfluidic-based proteomics enhances this field by integrating complex proteome analysis into compact and efficient systems. This review focuses on developing microfluidic chip structures for proteomics, covering on-chip sample pretreatment, protein extraction, purification, and identification in recent years.

View Article and Find Full Text PDF

Ultrasound-induced thermal strain imaging (US-TSI) is a promising ultrasound imaging modality that has been demonstrated in preclinical studies to identify a lipid-rich necrotic core of an atherosclerotic plaque. However, human physiological motion, e.g.

View Article and Find Full Text PDF

Discoidin Domain Receptor 1 (DDR1) is a receptor tyrosine kinase that binds to and is activated by collagen(s), including collagen type I. deletion in osteoblasts and chondrocytes has previously demonstrated the importance of this receptor in bone development. In this study, we examined the effect of DDR1 ablation on bone architecture and mechanics as a function of aging.

View Article and Find Full Text PDF

Integrating microfluidic and bioprinting technologies: advanced strategies for tissue vascularization.

Lab Chip

January 2025

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.

Tissue engineering offers immense potential for addressing the unmet needs in repairing tissue damage and organ failure. Vascularization, the development of intricate blood vessel networks, is crucial for the survival and functions of engineered tissues. Nevertheless, the persistent challenge of ensuring an ample nutrient supply within implanted tissues remains, primarily due to the inadequate formation of blood vessels.

View Article and Find Full Text PDF

Natural composites are emerging as promising alternative materials for 3D printing in biomedical applications due to their biocompatibility, sustainability, and unique mechanical properties. The use of natural composites offers several advantages, including reduced environmental impact, enhanced biodegradability, and improved tissue compatibility. These materials can be processed into filaments or resins suitable for various 3D printing techniques, such as fused deposition modeling (FDM).

View Article and Find Full Text PDF

Buckwheat () is a gluten-free crop valued for its protein, fiber, and essential minerals. This study investigates the rheological properties of buckwheat (BW) dough, both with and without the addition of gums (no gum, guar (GG), xanthan (XG)), at varying barrel temperatures (25, 55, and 85 °C) of the rheometer and at different water content levels (45, 50, and 55% /) to optimize dough formulations for 3D food printing. Using high shear stress capillary tests, the consistency coefficient (K) and flow behavior index (n) were measured.

View Article and Find Full Text PDF

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are associated with intercellular communications, immune responses, viral pathogenicity, cardiovascular diseases, neurological disorders, and cancer progression. EVs deliver proteins, metabolites, and nucleic acids into recipient cells to effectively alter their physiological and biological response. During their transportation from the donor to the recipient cell EVs face differential ionic concentrations, which can be detrimental to their integrity and impact their cargo content.

View Article and Find Full Text PDF

A biomimetic sperm selection device for routine sperm selection.

Reprod Biomed Online

September 2024

University of Technology Sydney, Sydney, Australia; Institute for Biomedical Materials and Devices, University of Technology Sydney, Sydney, Australia. Electronic address:

Research Question: Can a biomimetic microfluidic sperm sorter isolate motile sperm while minimizing DNA damage in comparison with density gradient centrifugation (DGC)?

Design: This was a two-phase study of 61 men, consisting of a proof-of-concept study with 21 donated semen samples in a university research laboratory, followed by a diagnostic andrology study with 40 consenting patients who presented at a fertility clinic for semen diagnostics. Each sample was split to perform DGC and microfluidic sperm selection (one-step sperm selection with 15 min of incubation) side-by-side. Outcomes evaluated included concentration, progressive motility, and DNA fragmentation index (DFI) of raw semen, and sperm isolated using DGC and the microfluidic device.

View Article and Find Full Text PDF

Polymeric nanoparticles surface functionalised with fluorescent molecules hold significant potential for advancing diagnostics and therapeutic delivery. Despite their promise, challenges persist in achieving robust attachment of fluorescent molecules for real-time tracking. Weak physical adsorption, pH-dependent electrostatic capture, and hydrophobic interactions often fail to achieve stable attachment of fluorescent markers.

View Article and Find Full Text PDF

Introduction: Pseudorandom balance perturbations use unpredictable disturbances of the support surface to quantify reactive postural control. The ability to quantify postural responses to a continuous multidirectional perturbation in two orthogonal dimensions of sway (e.g.

View Article and Find Full Text PDF

Multiple myeloma (MM), a cancer of bone marrow plasma cells, is the second-most common hematological malignancy. However, despite immunotherapies like chimeric antigen receptor (CAR)-T cells, relapse is nearly universal. The bone marrow (BM) microenvironment influences how MM cells survive, proliferate, and resist treatment.

View Article and Find Full Text PDF

Development and Evaluation of a Novel Drainage Cannula for Venoarterial Extracorporeal Membrane Oxygenation.

ASAIO J

December 2024

From the Cardio-Respiratory Engineering and Technology Laboratory, Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.

A critical factor in thrombus formation during venoarterial extracorporeal membrane oxygenation (VA ECMO) is prothrombotic flow dynamics generated by the drainage cannula's design. This study aimed to create and evaluate a novel drainage cannula design which optimized blood flow dynamics to reduce thrombus formation. Computational fluid dynamics (CFD) was used to iteratively vary drainage cannula design parameters such as inner wall shape and side hole shape.

View Article and Find Full Text PDF

Unlabelled: A hatching-distance-controlled lattice of 65.1Co28.2Cr5.

View Article and Find Full Text PDF

As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems.

View Article and Find Full Text PDF

A Low-Cost Microfluidic Device For the On-Line Counting of Microparticle/Bacteria.

Electrophoresis

December 2024

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an JiaoTong University, Xi'an, People's Republic of China.

On-line counting of the microparticle/bacteria in the liquid medium has great potential in the food safety and biomedical fields. A new low-cost microfluidic device is proposed for the on-line counting of the microparticles/bacteria in the liquid medium. The gradually contracted microchannel and the viscoelastic fluid are combined to achieve the efficient elastic focusing of the particle/bacteria, which significantly improves the counting accuracy by aligning all particles/bacteria in a single position at the center of the microchannel.

View Article and Find Full Text PDF

In the quest for materials that can withstand the rigors of modern engineering applications, high-entropy alloys (HEAs) have emerged as a frontier in material science owing to their unprecedented combination of properties. This review focuses on intricate thermodynamic and computational modeling to guide the design and optimization of HEAs. By dissecting the foundational "four core effects" intrinsic to HEAs-high entropy, sluggish diffusion, severe lattice distortion, and cocktail effect-we illuminate the path towards predictable and tailored material properties.

View Article and Find Full Text PDF

Immune digital twins for complex human pathologies: applications, limitations, and challenges.

NPJ Syst Biol Appl

November 2024

Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana, 47408, USA.

Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins.

View Article and Find Full Text PDF

Heuristic satisficing inferential decision making in human and robot active perception.

Front Robot AI

November 2024

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States.

Inferential decision-making algorithms typically assume that an underlying probabilistic model of decision alternatives and outcomes may be learned or online. Furthermore, when applied to robots in real-world settings they often perform unsatisfactorily or fail to accomplish the necessary tasks because this assumption is violated and/or because they experience unanticipated external pressures and constraints. Cognitive studies presented in this and other papers show that humans cope with complex and unknown settings by modulating between near-optimal and satisficing solutions, including heuristics, by leveraging information value of available environmental cues that are possibly redundant.

View Article and Find Full Text PDF

Computational modelling of valvular heart disease: haemodynamic insights and clinical implications.

Front Bioeng Biotechnol

November 2024

School of Public Health and Preventative Medicine, Monash University, Melbourne, VIC, Australia.

An aging population and an increasing incidence of cardiovascular risk factors form the basis for a global rising prevalence of valvular heart disease (VHD). Research to further our understanding of the pathophysiology of VHD is often confined to the clinical setting. However, in recent years, sophisticated computational models of the cardiovascular system have been increasingly used to investigate a variety of VHD states.

View Article and Find Full Text PDF

Advances in ligand-based surface engineering strategies for fine-tuning T cell mechanotransduction toward efficient immunotherapy.

Biophys J

November 2024

Department of Biomedical Engineering, New York University, Brooklyn, New York; Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York. Electronic address:

Article Synopsis
  • T cell-based immunotherapy is gaining attention for its ability to treat cancer by activating T cells to target and kill cancer cells through antigen-directed cytotoxicity.
  • Mechanical signaling is highlighted as a crucial yet often overlooked factor that influences T cell responses, from activation to destruction of cancer cells.
  • Recent advancements in interdisciplinary fields like chemistry and biomaterials have led to new techniques in surface engineering that can enhance T cell mechano-sensitivity and improve immunotherapy outcomes, although more research is still needed in this emerging area.
View Article and Find Full Text PDF

Pain and knee stiffness are common problems following total knee replacement surgery, with 10-20% of patients reporting dissatisfaction following their procedure. A remote assessment of knee stiffness could improve outcomes through continuous monitoring, facilitating timely intervention. Using machine learning algorithms, computer vision can extract joint angles from video footage, offering a method to monitor knee range of motion in patients' homes.

View Article and Find Full Text PDF

Background/objectives: Up to 30% of patients with breast cancers will develop brain or leptomeningeal metastases, and this risk is especially high with HER2-positive cancers. For patients with central nervous system metastases, cerebrospinal fluid (CSF) liquid biopsies are a promising opportunity to monitor disease, inform treatment, and predict prognosis. This pilot study investigated CSF liquid biopsy analytes from three patients diagnosed with central nervous system metastases based on imaging but not confirmed via clinical cytology.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) therapy, while promising for cancer treatment, faces challenges like unexpected side effects and limited objective responses. Here, we develop an in vivo gene-editing strategy for improving ICB cancer therapy in a lastingly effective manner. The approach uses a conductive hydrogel-based electroporation system to enable nucleofection of programmed cell death protein 1 (PD1) targeted CRISPR-Cas9 DNAs into T-cells directly within the lymph nodes, and subsequently produces PD1-deficient T-cells to combat tumor growth, metastasis and recurrence in different melanoma models in mice.

View Article and Find Full Text PDF

Socially driven negative feedback regulates activity and energy use in ant colonies.

PLoS Comput Biol

November 2024

Department of Biological Sciences, New Jersey Institute of Technology, Newark, New Jersey, United States of America.

Despite almost a century of research on energetics in biological systems, we still cannot explain energy regulation in social groups, like ant colonies. How do individuals regulate their collective activity without a centralized control system? What is the role of social interactions in distributing the workload amongst group members? And how does the group save energy by avoiding being constantly active? We offer new insight into these questions by studying an intuitive compartmental model, calibrated with and compared to data on ant colonies. The model describes a previously unexplored balance between positive and negative social feedback driven by individual activity: when activity levels are low, the presence of active individuals stimulates inactive individuals to start working; when activity levels are high, however, active individuals inhibit each other, effectively capping the proportion of active individuals at any one time.

View Article and Find Full Text PDF