47 results match your criteria: "Sathyabama Institute of Science and Technology (Deemed to Be University)[Affiliation]"

Peptidylarginine deiminase type4 (PAD4) is a pivotal pro-inflammatory protein within the human immune system, intricately involved in both inflammatory processes and immune responses. Its role extends to the generation of diverse immune cell types, including T cells, B cells, natural killer cells, and dendritic cells. PAD4 has recently garnered attention due to its association with a spectrum of inflammatory and autoimmune disorders, notably rheumatoid arthritis (RA).

View Article and Find Full Text PDF

Background: The Caries Impacts and Experiences Questionnaire for Children (CARIES-QC), which was developed to assess dental caries-specific Child Oral Health Related Quality of Life (COHRQoL), has been translated into few world languages.

Aim: To develop and validate the Tamil version of Caries Impacts and Experience Questionnaire for Children (CARIES-QC).

Design: This cross-sectional study was conducted among socially marginalized school children in Chennai City.

View Article and Find Full Text PDF

Recent advancements in the field of photoresponsive-based mercury (II) sensors have witnessed a surge in research focused on enhancing detection capabilities. Leveraging innovations in materials science, particularly with quantum dots, nanomaterials, and organic semiconductors, these sensors exhibit improved selectivity and sensitivity. Beyond traditional applications, such as environmental monitoring, the integration of photoresponsive principles with emerging technologies like the internet of things (IoT) and wearable promises real-time and remote mercury (II) ion detection.

View Article and Find Full Text PDF

This review explores the ever-evolving landscape of thermoelectric materials, focusing on the latest trends and innovations in ceramics, thermally conductive gel-like materials, metals, nanoparticles, polymers, and silicon. Thermoelectric materials have garnered significant attention for their capability to convert waste heat into electrical power, positioning them as promising candidates for energy harvesting and cooling applications. This review distinguishes itself by highlighting recent advancements in synthesis methods, advanced doping strategies, and nanostructuring techniques that have markedly enhanced material performance.

View Article and Find Full Text PDF

Assessing the impact of food additives on neurodevelopmental processes extends beyond traditional acute toxicity evaluations to address subtler, long-term effects. This study investigates the impact of common food additives (tartrazine, sunset yellow, sodium benzoate, and aspartame) on neurodevelopment in zebrafish embryos, observed from 18 hours postfertilization (hpf) to 91 days postfertilization (dpf). Results show reduced 96 hpf locomotor activity after aspartame exposure, with elevated additives correlating with decreased heart rates and induced neurodegenerative phenotypes, including bent tails and abnormal pigmentation.

View Article and Find Full Text PDF

Due to its emerging resistance to first-line anti-TB medications, tuberculosis (TB) is one of the most contagious illness in the world. According to reports, the effectiveness of treating TB is severely impacted by drug resistance, notably resistance caused by mutations in the pncA gene-encoded pyrazinamidase (PZase) to the front-line drug pyrazinamide (PZA). The present study focused on investigating the resistance mechanism caused by the mutations D12N, T47A, and H137R to better understand the structural and molecular events responsible for the resistance acquired by the pncA gene of Mycobacterium tuberculosis (MTB) at the structural level.

View Article and Find Full Text PDF

AICP is a crucial process that maintaining tissue homeostasis and regeneration. In the past, cell death was perceived merely as a means to discard cells without functional consequences. However, during regeneration, effector caspases orchestrate apoptosis, releasing signals that activate stem cells, thereby compensating for tissue loss across various animal models.

View Article and Find Full Text PDF

Regeneration is a multifaceted biological phenomenon that necessitates the intricate orchestration of apoptosis, stem cells, and immune responses, culminating in the regulation of apoptosis-induced compensatory proliferation (AICP). The AICP context of research is observed in many animal models like in Hydra, Xenopus, newt, Drosophila, and mouse but so far not reported in earthworm. The earthworm Perionyx excavatus is used in the present study to understand the relationship between AICP-related protein expression and regeneration success in different conditions (normal regeneration and abnormal multiple bud formation).

View Article and Find Full Text PDF

Roadside soil contamination is mostly caused by human-caused pollutant deposition. PTEs are among the many substances that are harmful for both humans and the environment. PTE concentrations in roadside soil in Chennai, southern India, have been determined in this study.

View Article and Find Full Text PDF

Sunscreen formulations have undergone significant advancements in recent years, with a focus on improving UV radiation protection, photostability, and environmental sustainability. Chromophore compounds and nanoparticles have emerged as key components in these developments. This review highlights the latest research and innovations in chromophore compounds and nanoparticle-based sunscreens.

View Article and Find Full Text PDF

Background: Regeneration is a highly complex process that requires the coordination of numerous molecular events, and identifying the key ruler that governs is important to investigate. While it has been shown that TCTP is a multi-functional protein that regulates cell proliferation, differentiation, apoptosis, anti-apoptosis, stem cell maintenance, and immune responses, but only a few studies associated to regeneration have been reported. To investigate the multi-functional role of TCTP in regeneration, the earthworm Perionyx excavatus was chosen.

View Article and Find Full Text PDF

Tuberculosis (TB) is a lethal multisystem disease that attacks the lungs' first line of defense. A substantial threat to public health and a primary cause of death is pulmonary TB. This study aimed to identify and investigate the probable differentially expressed genes (DEGs) primarily involved in Pulmonary TB.

View Article and Find Full Text PDF

In the current research, Zinc (tris)-thiourea sulfate (ZTTS), a metal-organic crystal, has been synthesized using the slow solvent evaporation technique. Powder-X-ray diffraction (PXRD) analysis, Fourier transform infrared (FT-IR) spectroscopy, UV-Vis spectroscopy, photoluminescence (PL) spectroscopy, and thermal, and second harmonic generation measurements have all been applied to describe the as-synthesized ZTTS crystals. The synthesized samples crystallized in an orthorhombic structure, based on XRD analysis.

View Article and Find Full Text PDF

In many coastal areas around the world, the seagrasses provide an essential source of livelihood for many civilizations and support high levels of biodiversity. Seagrasses are highly valuable, as they provide habitat for numerous fish, endangered sea cows, Dugong dugon, and sea turtles. The health of seagrasses is being threatened by many human activities.

View Article and Find Full Text PDF

Objectives: To estimate the concentration of nitrous oxide (NO) required for effective sedation to render dental treatment for an anxious child and to assess the child's behavior, patient acceptance, parental satisfaction, postoperative complications, and ease of manipulation of Porter Silhouette mask by the dentist during NO-O sedation.

Study Design: A total of 40 children, 6-10-year-old requiring dental treatment, were treated using NO sedation. The level of NO required for optimal sedation, patient behavior, level of acceptance of NO by the patient, clinical recovery score, and postoperative complications were observed throughout the study.

View Article and Find Full Text PDF

An Update on Poly(ADP-ribose) Polymerase I-A Brief Review.

Mini Rev Med Chem

September 2023

Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.

Poly (ADP-ribose) polymerase 1 (PARP1) plays important roles in both DNA repair and transcription, and the interplay of these processes in relation to cellular function and disease states has not been well defined. The tumor-suppressor effects of PARP inhibitors have attracted significant interest in the development of novel cancer therapies. As PARP1 binding motifs may be readily found in promoter elements of DNA repair genes, the expanding role of PARP1 in DNA repair does not have to be independent of transcription.

View Article and Find Full Text PDF

Dendrimers are branched molecules with well-defined lengths, shapes, molecular weights, and monodispersity in comparison to linear polymers. The dual effect of the chromophore luminescence and the morphology of the synthesized dendrimers has drawn a lot of interest towards the design of dendrimers with different chromophores. Furthermore, the stimulus-responsive systems can sequester drug molecules under a preset set of parameters and release them in a different environment in response to either an exogenous or endogenous stimulus.

View Article and Find Full Text PDF

RGO nanosheet wrapped β-phase NiCuS nanorods for advanced supercapacitor applications.

Environ Sci Pollut Res Int

February 2023

Centre for Nano Science and Nanotechnology, K.S. Rangasamy College of Technology, Tiruchengode, Tamil Nadu, 637215, India.

A new integration strategy of transition metal sulfide with carbon-based materials is used to boost its catalytic property and electrochemical performances in supercapacitor application. Herein, crystalline reduced graphene oxide (rGO) wrapped ternary metal sulfide nanorod composites with different rGO ratios are synthesized using hydrothermal technique and are compared for their physical, chemical, and electrochemical performances. It is found that their properties are tuned by the weight ratios of rGO.

View Article and Find Full Text PDF

Eudrilus eugeniae is a clitellum-dependent earthworm that requires intact clitellum segments for its survival and regeneration. The present study aims to interconnect the survival and regeneration ability that varies between in vivo and in vitro maintenance upon different sites of amputation. The amputated portion of the worm that possesses intact clitellum (13th-18th segments) survived and had the potential to regenerate, whereas worms with partial or without clitellum segments only survived and were unable to regenerate.

View Article and Find Full Text PDF

Nowadays, gels are formed by small molecules self-assembling under the influence of various non-covalent interactions. They can be easily perturbed, which allows for the careful tweaking of their properties. They are kinetically confined, and following production, they usually do not demonstrate time-variable changes in material properties.

View Article and Find Full Text PDF

Chrysin-Loaded Chitosan Nanoparticle-Mediated Neuroprotection in Aβ-Induced Neurodegenerative Conditions in Zebrafish.

ACS Chem Neurosci

July 2022

Neuroscience Lab, Centre for Molecular and Nanomedical Science, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600119, Tamil Nadu, India.

Amyloid β plaques and neurofibrillary tangles are the characteristic features of Alzheimer's disease (AD). Plaques of amyloid β play a pivotal role in affecting cognitive functions and memory. Alzheimer's disease is a progressive neurodegenerative disease and is one of the leading causes of dementia worldwide.

View Article and Find Full Text PDF

Nanostructured materials possess unique structural and functional properties that play a crucial position in tissue engineering applications. Present investigation is aimed to synthesize chitosan-sodium alginate (CS) nanocomposite using hydrothermally prepared zirconia nanoparticles. In this, three different weight percentages of (0.

View Article and Find Full Text PDF

Unlabelled: The objective of this study was to develop nanobiomaterial containing silver nanoparticles (AgNPs) for wound healing. AgNPs were synthesized using (Sl) aqueous root extract as reducing agent and were characterized physico-chemically using UV-vis spectral studies, XRD, FESEM, TEM, FTIR spectral analysis, DLS, and TG-DSC. Sl AgNPs production was optimized using response surface methodology.

View Article and Find Full Text PDF