72 results match your criteria: "Saratov Scientific Centre[Affiliation]"

Drug delivery using gold nanoparticles.

Adv Drug Deliv Rev

January 2025

Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia. Electronic address:

Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution.

View Article and Find Full Text PDF

Structure and characterization of an extracellular polysaccharide from Paenibacillus polymyxa 88A.

Int J Biol Macromol

December 2024

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.

Levan-type polysaccharides, produced by various organisms, are nontoxic, biocompatible, and biodegradable polymers with a wide range of biological activities. They have high potential for use in medicine, cosmetology, and industry. A large amount of levan (41.

View Article and Find Full Text PDF

Introduction: Gratiola officinalis L. (hedge hyssop), a medicinal plant of the Scrophulariaceae family, has diuretic, purgative, and vermifuge properties. It is used as a herbal tea to treat chronic gastroenteritis, renal colic, jaundice, and intestinal worms.

View Article and Find Full Text PDF

Delivery and kinetics of immersion optical clearing agents in tissues: Optical imaging from ex vivo to in vivo.

Adv Drug Deliv Rev

October 2024

Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. Electronic address:

Advanced optical imaging provides a powerful tool for the structural and functional analysis of tissues with high resolution and contrast, but the imaging performance decreases as light propagates deeper into the tissue. Tissue optical clearing technique demonstrates an innovative way to realize deep-tissue imaging and have emerged substantially in the last two decades. Here, we briefly reviewed the basic principles of tissue optical clearing techniques in the view of delivery strategies via either free diffusion or external forces-driven advection, and the commonly-used optical techniques for monitoring kinetics of clearing agents in tissue, as well as their ex vivo to in vivo applications in multiple biomedical research fields.

View Article and Find Full Text PDF

Tissue Optical Clearing Imaging from Ex vivo toward In vivo.

BME Front

September 2024

Institute of Physics and Science Medical Center, Saratov State University, Saratov 410012, Russian Federation.

View Article and Find Full Text PDF

Pollutant degradation and heavy-metal resistance may be important features of the rhizobia, making them promising agents for environment cleanup biotechnology. The degradation of phenanthrene, a three-ring polycyclic aromatic hydrocarbon (PAH), by the rhizobial strain Rsf11 isolated from the oil-polluted rhizosphere of alfalfa and the influence of nickel ions on this process were studied. On the basis of whole-genome and polyphasic taxonomy, the bacterium Rsf11 represent a novel species of the genus , so the name sp.

View Article and Find Full Text PDF

A comprehensive study was performed on the supramolecular ordering and optical properties of thin nanostructured glycerohydrogel sol-gel plates based on chitosan L- and D-aspartate and their individual components in the X-ray, UV, visible, and IR ranges. Our comparative analysis of chiroptical characteristics, optical collimated transmittance, the average cosine of the scattering angle, microrelief and surface asymmetry, and the level of structuring shows a significant influence of the wavelength range of electromagnetic radiation and the enantiomeric form of aspartic acid on the functional characteristics of the sol-gel materials. At the macrolevel of the supramolecular organization, a complex topography of the surface layer and a dense amorphous-crystalline ordering of polymeric substances were revealed, while at the nanolevel, there were two forms of voluminous scattering domains: nanospheres with diameters of 60-120 nm (L-) and 45-55 nm (D-), anisometric particles of lengths within ~100-160 (L-) and ~85-125 nm (D-), and widths within ~10-20 (L-) and ~20-30 nm (D-).

View Article and Find Full Text PDF
Article Synopsis
  • Achromobacter insolitus LCu2, isolated from alfalfa roots, can degrade 50% of glyphosate and tolerate high levels of copper and glyphosate-copper complexes.
  • Inoculating alfalfa and potato plants with this strain enhanced their growth by 30-50% and reduced glyphosate toxicity compared to non-inoculated plants.
  • The strain's genome indicates it has genes for promoting plant growth, degrading organophosphonates like glyphosate, and tolerating heavy metals, making it a promising candidate for improving crop yields and soil remediation.
View Article and Find Full Text PDF

Despite the recent advances in quantum technology, the problem of controlling the light emission properties of quantum emitters used in numerous applications remains: a large spectral width, low intensity, blinking, photodegradation, biocompatibility, . In this work, we present the theoretical and experimental investigation of quantum light sources - mesoscopic systems consisting of fluorescent molecules in a thin polydopamine layer coupled with metallic or dielectric nanoparticles. Polydopamines possess many attractive adhesive and optical properties that promise their use as host media for dye molecules.

View Article and Find Full Text PDF

The meningeal lymphatic vessels (MLVs) play an important role in the removal of toxins from the brain. The development of innovative technologies for the stimulation of MLV functions is a promising direction in the progress of the treatment of various brain diseases associated with MLV abnormalities, including Alzheimer's and Parkinson's diseases, brain tumors, traumatic brain injuries, and intracranial hemorrhages. Sleep is a natural state when the brain's drainage processes are most active.

View Article and Find Full Text PDF

Basidiomycetes Polysaccharides Regulate Growth and Antioxidant Defense System in Wheat.

Int J Mol Sci

June 2024

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences, 13 Prospekt Entuziastov, 410049 Saratov, Russia.

Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants.

View Article and Find Full Text PDF

Existing methods for the mass detection of viruses are limited to the registration of small amounts of a viral genome or specific protein markers. In spite of high sensitivity, the applied methods cannot distinguish between virulent viral particles and non-infectious viral particle debris. We report an approach to solve this long-standing challenge using the SARS-CoV-2 virus as an example.

View Article and Find Full Text PDF

One of the most significant problems of the 21st century is the anthropogenic strain on the environment. The development of nanotechnology makes it possible to produce a variety of nanomaterials widely used in people's daily lives. However, nanomaterials can accumulate in ecosystems and spread through food chains.

View Article and Find Full Text PDF

The study encompasses an investigation of optical, photothermal and biocompatibility properties of a composite consisting of golden cores surrounded by superparamagnetic CoFeO nanoparticles. Accompanied with the experiment, the computational modeling reveals that each adjusted magnetic nanoparticle redshifts the plasmon resonance frequency in gold and nonlinearly increases the extinction cross-section at ~800 nm. The concentration dependent photothermal study demonstrates a temperature increase of 8.

View Article and Find Full Text PDF

Global climate change and high population growth rates lead to problems of food security and environmental pollution, which require new effective methods to increase yields and stress tolerance of important crops. Nowadays the question of using artificial chemicals is very relevant in theoretical and practical terms. It is important that such substances in low concentrations protect plants under stress conditions, but at the same time inflict minimal damage on the environment and human health.

View Article and Find Full Text PDF
Article Synopsis
  • * Current methods have limitations in accuracy, prompting research into better techniques, particularly by analyzing speckle patterns in OCT images.
  • * The study found that local brightness fluctuations from wavelet analysis of OCT data improve the differentiation of glioma from healthy brain tissue, suggesting this approach could enhance neurosurgical diagnostics.
View Article and Find Full Text PDF

The immunostimulatory roles of gold nanoparticles in immunization and vaccination against Brucella abortus antigens.

Int Immunopharmacol

May 2024

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospect Entuziastov, Saratov 410049, Russia. Electronic address:

One effective antigen carrier proposed for use in immunization and vaccination is gold nanoparticles. Prior work has shown that gold nanoparticles themselves have adjuvant properties. Currently, gold nanoparticles are used to design new diagnostic tests and vaccines against viral, bacterial, and parasitic infections.

View Article and Find Full Text PDF

Structural studies of the O polysaccharides from the lipopolysaccharides of Azospirillum thiophilum BV-S and Azospirillum griseum L-25-5w-1.

Carbohydr Res

April 2024

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, 410049, Russia; Chernyshevsky Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov, 410012, Russia.

Diazotrophic bacteria of the genus Azospirillum are known widely, because they are ubiquitous in the rhizosphere and can promote the growth and performance of nonlegume plants. Recently, more Azospirillum species have been isolated from sources other than plants or soil. We report the structures of the O polysaccharides (OPSs) from the lipopolysaccharides of the type strains A.

View Article and Find Full Text PDF

This article reports the results of quantitative intra- and intergeneric taxonomic relationships among Micrococcaceae strains and a novel endophytic bacterium (SG) isolated from a suspension culture of Arabidopsis thaliana (L.) Heynh in our laboratory. The known strain Rothia sp.

View Article and Find Full Text PDF
Article Synopsis
  • There is a link between sleep quality and glioma-specific outcomes, suggesting that better sleep may improve survival rates in glioma patients due to enhanced brain drainage (BD) functions.
  • Emerging evidence shows that photobiomodulation (PBM) therapy can enhance BD and is more effective when administered during sleep rather than wakefulness.
  • A study on male rats found that PBM during sleep not only reduced glioma growth more effectively than treatment during waking hours but also boosted immune responses, ultimately improving survival rates.
View Article and Find Full Text PDF

Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical-chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-β-d-Fuc-(1→3)-β-d-Fuc-(1→.

View Article and Find Full Text PDF

Lipopolysaccharides of Herbaspirillum species and their relevance for bacterium-host interactions.

Int J Biol Macromol

March 2024

Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia; G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, 159 Prospekt 100 Let Vladivostoku, Vladivostok 690022, Russia.

The lipopolysaccharides of Herbaspirillum lusitanum P6-12 (HlP6-12) and H. frisingense GSF30 (HfGSF30) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization.

View Article and Find Full Text PDF

Correct classification of skin lesions is a key step in skin cancer screening, which requires high accuracy and interpretability. This paper proposes a multimodal method for differentiating various clinical forms of basal cell carcinoma and benign neoplasms that includes machine learning. This study was conducted on 37 neoplasms, including benign neoplasms and five different clinical forms of basal cell carcinoma.

View Article and Find Full Text PDF

We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser.

View Article and Find Full Text PDF