29 results match your criteria: "Sanford-Burnham Institute for Medical Research[Affiliation]"

The transcription factor ATF2 was previously shown to be an ATM substrate. Upon phosphorylation by ATM, ATF2 exhibits a transcription-independent function in the DNA damage response through localization to DNA repair foci and control of cell cycle arrest. To assess the physiological significance of this phosphorylation, we generated ATF2 mutant mice in which the ATM phosphoacceptor sites (S472/S480) were mutated (ATF2(KI)).

View Article and Find Full Text PDF

Skeletal muscle differentiation relies on the coordinated activation and repression of specific subsets of genes. This reflects extensive changes in chromatin architecture, composition of chromatin-associated complexes and histone modifications at the promoter/enhancer elements of skeletal muscle genes. An early, key event in the activation of muscle-specific gene transcription is the disruption of the repressive conformation imposed by nucleosomes, which impede the access of pioneer transcription factors, such as the muscle-specific basic helix-loop-helix (bHLH) factors MyoD and Myf5, to their DNA-binding sites.

View Article and Find Full Text PDF

Smooth muscle cell (SMC) plasticity plays an important role during development and in vascular pathologies such as atherosclerosis and restenosis. It was recently shown that down-regulation of microRNA (miR)-143 and -145, which are coexpressed from a single promoter, regulates the switch from contractile to synthetic phenotype, allowing SMCs to migrate and proliferate. We show in this study that loss of miR-143/145 in vitro and in vivo results in the formation of podosomes, which are actin-rich membrane protrusions involved in the migration of several cell types, including SMCs.

View Article and Find Full Text PDF

There is a need to develop inhibitors of mosquito-borne flaviviruses, including WNV (West Nile virus). In the present paper, we describe a novel and efficient recombinant-antibody technology that led us to the isolation of inhibitory high-affinity human antibodies to the active-site region of a viral proteinase. As a proof-of-principal, we have successfully used this technology and the synthetic naive human combinatorial antibody library HuCAL GOLD(R) to isolate selective and potent function-blocking active-site-targeting antibodies to the two-component WNV NS (non-structural protein) 2B-NS3 serine proteinase, the only proteinase encoded by the flaviviral genome.

View Article and Find Full Text PDF