1,344 results match your criteria: "Sanford Burnham Medical Research Institute[Affiliation]"

The highly anisotropic environment of the lipid bilayer membrane imposes significant constraints on the structures and functions of membrane proteins. However, NMR structure calculations typically use a simple repulsive potential that neglects the effects of solvation and electrostatics, because explicit atomic representation of the solvent and lipid molecules is computationally expensive and impractical for routine NMR-restrained calculations that start from completely extended polypeptide templates. Here, we describe the extension of a previously described implicit solvation potential, eefxPot, to include a membrane model for NMR-restrained calculations of membrane protein structures in XPLOR-NIH.

View Article and Find Full Text PDF

Activation of the Kelch-like ECH-associated protein 1/nuclear factor (erythroid-derived 2)-like 2 and heat-shock protein 90/heat-shock factor-1 signal-transduction pathways plays a central role in combatting cellular oxidative damage and related endoplasmic reticulum stress. Electrophilic compounds have been shown to be activators of these transcription-mediated responses through S-alkylation of specific regulatory proteins. Previously, we reported that a prototype compound (D1, a small molecule representing a proelectrophilic, para-hydroquinone species) exhibited neuroprotective action by activating both of these pathways.

View Article and Find Full Text PDF

Cellular Mechanisms of Drosophila Heart Morphogenesis.

J Cardiovasc Dev Dis

March 2015

Development, Aging and Regeneration Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.

Many of the major discoveries in the fields of genetics and developmental biology have been made using the fruit fly, With regard to heart development, the conserved network of core cardiac transcription factors that underlies cardiogenesis has been studied in great detail in the fly, and the importance of several signaling pathways that regulate heart morphogenesis, such as Slit/Robo, was first shown in the fly model. Recent technological advances have led to a large increase in the genomic data available from patients with congenital heart disease (CHD). This has highlighted a number of candidate genes and gene networks that are potentially involved in CHD.

View Article and Find Full Text PDF

Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) is a powerful technology platform among current lipidomics practices due to its high efficiency, sensitivity, and reproducibility, as well as its broad coverage. This platform has been widely used to determine the altered lipid profiles induced by diseases, injury, genetic manipulations, drug treatments, and aging, among others. Herein, we summarize the principles underlying this platform and present a protocol for analysis of many of the lipid classes and subclasses covered by MDMS-SL directly from lipid extracts of brain samples.

View Article and Find Full Text PDF

PHOSPHO1 is one of principal proteins involved in initiating bone matrix mineralisation. Recent studies have found that Phospho1 KO mice (Phospho1-R74X) display multiple skeletal abnormalities with spontaneous fractures, bowed long bones, osteomalacia and scoliosis. These analyses have however been limited to young mice and it remains unclear whether the role of PHOSPHO1 is conserved in the mature murine skeleton where bone turnover is limited.

View Article and Find Full Text PDF

To-date, the function of tissue-nonspecific alkaline phosphatase (TNAP) has largely been defined through studies in patients and mice affected by hypophosphatasia (HPP), a rare inborn-error-of-metabolism caused by mutation(s) in the TNAP gene (ALPL). The skeletal disease in HPP can be explained by alterations in the Pi/PPi ratio, with accumulation in the concentration of the mineralization inhibitor PPi as the culprit in preventing propagation of mineralization onto the collagenous extracellular matrix in bones and teeth. Accumulation of phosphorylated osteopontin increases the severity of HPP, at least in mice.

View Article and Find Full Text PDF

Genetically modified mice are powerful tools for understanding the functions of genes and proteins and often serve as models of human disease. Here, several knockout and transgenic mouse lines related to tissue-nonspecific alkaline phosphatase (TNAP) are described. Conventional TNAP knockout mice die before weaning and show vitamin B6 dependent epilepsy and impaired bone mineralization, mimicking infantile hypophosphatasia.

View Article and Find Full Text PDF

Small GSH-Capped CuInS2 Quantum Dots: MPA-Assisted Aqueous Phase Transfer and Bioimaging Applications.

ACS Appl Mater Interfaces

August 2015

§Micro Nano Technology Center, Beijing Institute of Technology, 5 Zhongguancun South Street, Beijing 100081, P. R. China.

An efficient ligand exchange strategy for aqueous phase transfer of hydrophobic CuInS2/ZnS quantum dots was developed by employing glutathione (GSH) and mercaptopropionic acid (MPA) as the ligands. The whole process takes less than 20 min and can be scaled up to gram amount. The material characterizations show that the final aqueous soluble samples are solely capped with GSH on the surface.

View Article and Find Full Text PDF

Objectives: The relative contributions of inflammatory signalling and sequential oncogenic dysregulation driving liver cancer pathogenesis remain incompletely understood. Lymphotoxin-β receptor (LTβR) signalling is critically involved in hepatitis and liver tumorigenesis. Therefore, we explored the interdependence of inflammatory lymphotoxin signalling and specific oncogenic pathways in the progression of hepatic cancer.

View Article and Find Full Text PDF

Sevoflurane is a volatile anesthetic that has been widely used in general anesthesia, yet its safety in pediatric use is a public concern. This study sought to evaluate whether prolonged exposure of infant monkeys to a clinically relevant concentration of sevoflurane is associated with any adverse effects on the developing brain. Infant monkeys were exposed to 2.

View Article and Find Full Text PDF

Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease.

Cell Death Dis

July 2015

1] Section for Sports Science, Institute of Public Health, Aarhus University, Aarhus, Denmark [2] Institute of Sports Medicine, Department of Orthopaedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Recent evidence has revealed the importance of reciprocal functional interactions between different types of mononuclear cells in coordinating the repair of injured muscles. In particular, signals released from the inflammatory infiltrate and from mesenchymal interstitial cells (also known as fibro-adipogenic progenitors (FAPs)) appear to instruct muscle stem cells (satellite cells) to break quiescence, proliferate and differentiate. Interestingly, conditions that compromise the functional integrity of this network can bias muscle repair toward pathological outcomes that are typically observed in chronic muscular disorders, that is, fibrotic and fatty muscle degeneration as well as myofiber atrophy.

View Article and Find Full Text PDF

We developed a quantum-dot-based fluorescence resonance energy transfer (QD-FRET) nanosensor to visualize the activity of matrix metalloproteinase (MT1-MMP) at cell membrane. A bended peptide with multiple motifs was engineered to position the FRET pair at a close proximity to allow energy transfer, which can be cleaved by active MT1-MMP to result in FRET changes and the exposure of cell penetrating sequence. Via FRET and penetrated QD signals, the nanosensor can profile cancer cells.

View Article and Find Full Text PDF

ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J.

View Article and Find Full Text PDF

Granulocyte-colony stimulating factor as a treatment for diabetic neuropathy in rat.

Mol Cell Endocrinol

October 2015

Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, CA, USA; Department of Neurosciences, School of Medicine, University of California at San Diego, CA, USA. Electronic address:

Effective treatment of diabetic neuropathy (DN) remains unsolved. We serendipitously observed dramatic relief of pain in several patients with painful DN receiving granulocyte-colony stimulating factor (G-CSF). The aim of this study was to determine if G-CSF could treat DN in an animal model and to ascertain its mechanism of action.

View Article and Find Full Text PDF
Article Synopsis
  • Caloric restriction (CR) appears to increase lifespan in various species, and it has been studied in a 2-year trial involving 218 nonobese humans aged 21-51 to assess its feasibility, safety, and impact on health metrics.
  • Participants were divided into a CR group aiming for 25% energy intake reduction and an ad libitum (AL) group, with results showing significant changes in resting metabolic rates, thyroid hormone levels, and other health indicators favoring the CR group.
  • The study concluded that sustained CR is achievable in nonobese individuals without negatively affecting quality of life and may have beneficial implications for aging and disease risk, warranting further research.
View Article and Find Full Text PDF

Harnessing the Power of Integrated Mitochondrial Biology and Physiology: A Special Report on the NHLBI Mitochondria in Heart Diseases Initiative.

Circ Res

July 2015

From the Departments of Physiology and Medicine, UCLA David Geffen School of Medicine (P.P., H.C., J.N.W.); Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla (Å.B.G.); Department of Pharmacology, UC Davis, Davis, CA (D.M.B.); Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL (L.A.B.); Center for Integrative Research on Cardiovascular Aging, Cardiovascular Services and Department of Research, Aurora Health Care, Milwaukee, WI (A.J.); Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL (D.K.); Department of Medicine, Duke University, Durham, NC (D.M.); Department of Medicine, Division of Cardiology (B.O.R.), Department of Biomedical Engineering (N.T.), and Department of Medicine, Division of Cardiology (J.V.E.), The Johns Hopkins University School of Medicine, Baltimore, MD (B.O'R., N.T., J.V.E.); Department of Pathology, University of Washington, Seattle (P.R.); and Heart Failure and Arrhythmia Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD (R.W., L.S.L.).

Mitochondrial biology is the sum of diverse phenomena from molecular profiles to physiological functions. A mechanistic understanding of mitochondria in disease development, and hence the future prospect of clinical translations, relies on a systems-level integration of expertise from multiple fields of investigation. Upon the successful conclusion of a recent National Institutes of Health, National Heart, Lung, and Blood Institute initiative on integrative mitochondrial biology in cardiovascular diseases, we reflect on the accomplishments made possible by this unique interdisciplinary collaboration effort and exciting new fronts on the study of these remarkable organelles.

View Article and Find Full Text PDF

Quantification of nascent transcription by bromouridine immunocapture nuclear run-on RT-qPCR.

Nat Protoc

August 2015

1] Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, USA. [2] School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia.

Nuclear run-on (NRO) is a method that measures transcriptional activity via the quantification of biochemically labeled nascent RNA molecules derived from nuclear isolates. Widespread use of this technique has been limited because of its technical difficulty relative to steady-state total mRNA analyses. Here we describe a detailed protocol for the quantification of transcriptional activity in human cell cultures.

View Article and Find Full Text PDF

Targeting thiamine-dependent enzymes for metabolic therapies in oral squamous cell carcinoma?

Clin Transl Oncol

February 2016

Department of Oral and Maxillofacial Surgery, University Hospital Tuebingen, Osianderstrasse 2-8, 72076, Tuebingen, Germany.

Purpose: Thiamine-dependent enzymes (TDEs) linking glycolysis with the tricarboxylic acid cycle (TCA) pyruvate dehydrogenase (PDH), of the pentose phosphate pathway transketolases (TKTs), the TCA alpha-ketoglutarate deydrogenase (KGDH)/2-oxoglutarate dehydrogenase (OGDH) complex, and the amino acid catabolism branched-chain alpha-ketoacid dehydrogenase (BCKDH) complex are crucial factors for tumor metabolism. The expression of these enzymes has not been analyzed for carcinogenesis of oral squamous cell carcinoma (OSCC) with special focus on new targeted metabolic therapies as yet.

Methods: TDEs PDH, KGDH (OGDH), and BCKDH were analyzed in normal oral mucosa (n = 14), oral precursor lesions (simple hyperplasia, n = 21; squamous intraepithelial neoplasia, SIN I-III, n = 35), and OSCC specimen (n = 46) by immunohistochemistry and western blot (WB) analysis in OSCC tumor cell lines.

View Article and Find Full Text PDF

HIV Vpu Interferes with NF-κB Activity but Not with Interferon Regulatory Factor 3.

J Virol

October 2015

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA

Unlabelled: The accessory HIV protein Vpu inhibits a number of cellular pathways that trigger host innate restriction mechanisms. HIV Vpu-mediated degradation of tetherin allows efficient particle release and hampers the activation of the NF-κB pathway thereby limiting the expression of proinflammatory genes. In addition, Vpu reduces cell surface expression of several cellular molecules such as newly synthesized CD4.

View Article and Find Full Text PDF

Flavodoxins in combination with the flavin mononucleotide (FMN) cofactor play important roles for electron transport in prokaryotes. Here, novel insights into the FMN-binding mechanism to flavodoxins-4 were obtained from the NMR structures of the apo-protein from Lactobacillus acidophilus (YP_193882.1) and comparison of its complex with FMN.

View Article and Find Full Text PDF

Protein arginylation is an emerging post-translational modification that targets a number of metabolic enzymes; however, the mechanisms and downstream effects of this modification are unknown. Here we show that lack of arginylation renders cells vulnerable to purine nucleotide synthesis inhibitors and affects the related glycine and serine biosynthesis pathways. We show that the purine nucleotide biosynthesis enzyme PRPS2 is selectively arginylated, unlike its close homologue PRPS1, and that arginylation of PRPS2 directly facilitates its biological activity.

View Article and Find Full Text PDF

Human neutrophil serine protease 4 (NSP4), also known as PRSS57, is a recently discovered fourth member of the neutrophil serine proteases family. Although its biological function is not precisely defined, it is suggested to regulate neutrophil response and innate immune reactions. To create optimal substrates and visualization probes for NSP4 that distinguish it from other NSPs we have employed a Hybrid Combinatorial Substrate Library approach that utilizes natural and unnatural amino acids to explore protease subsite preferences.

View Article and Find Full Text PDF

Perilipin 3 Differentially Regulates Skeletal Muscle Lipid Oxidation in Active, Sedentary, and Type 2 Diabetic Males.

J Clin Endocrinol Metab

October 2015

Pennington Biomedical Research Center (J.D.C., R.C.N., R.C.H., B.S.M., E.R., S.B.), Laboratory of Skeletal Muscle Physiology, Baton Rouge, Louisiana 70808; Louisiana State University Health Sciences Center (J.D.C.), School of Medicine, New Orleans, Louisiana 70112; Translational Research Institute for Metabolism and Diabetes (S.R.S.), Florida Hospital, Sanford-Burnham Medical Research Institute, Winter Park, Florida 32789; Department of Pharmaceutical Biosciences (A.C.R.), University of Oslo, Oslo, Norway; and Department of Kinesiology (S.B.), University of Texas-El Paso, El Paso, Texas 79968.

Context: The role of perilipin 3 (PLIN3) on lipid oxidation is not fully understood.

Objective: We aimed to 1) determine whether skeletal muscle PLIN3 protein content is associated with lipid oxidation in humans, 2) understand the role of PLIN3 in lipid oxidation by knocking down PLIN3 protein content in primary human myotubes, and 3) compare PLIN3 content and its role in lipid oxidation in human primary skeletal muscle cultures established from sedentary, healthy lean (leans), type 2 diabetic (T2D), and physically active donors.

Design, Participants, And Intervention: This was a clinical investigation of 29 healthy, normoglycemic males and a cross-sectional study using primary human myotubes from five leans, four T2D, and four active donors.

View Article and Find Full Text PDF

Metavinculin Tunes the Flexibility and the Architecture of Vinculin-Induced Bundles of Actin Filaments.

J Mol Biol

August 2015

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1569, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1570, USA. Electronic address:

Vinculin is an abundant protein found at cell-cell and cell-extracellular matrix junctions. In muscles, a longer splice isoform of vinculin, metavinculin, is also expressed. The metavinculin-specific insert is part of the C-terminal tail domain, the actin-binding site of both isoforms.

View Article and Find Full Text PDF

The development of novel, targeted delivery agents for anti-cancer therapies requires the design and optimization of potent and selective tumor-targeting agents that are stable and amenable to conjugation with chemotherapeutic drugs. While short peptides represent potentially an excellent platform for these purposes, they often get degraded and are eliminated too rapidly in vivo. In this study, we used a combination of nuclear magnetic resonance-guided structure-activity relationships along with biochemical and cellular studies to derive a novel tumor-homing agent, named 123B9, targeting the EphA2 tyrosine kinase receptor ligand-binding domain.

View Article and Find Full Text PDF