1,636 results match your criteria: "Saha Institute of Nuclear physics[Affiliation]"

The advancement of photocatalytic technology for solar-driven hydrogen (H2) production remains hindered by several challenges in developing efficient photocatalysts. A key issue is the rapid recombination of charge carriers, which significantly limits the light-harvesting ability of materials like BiOCl and Cu2SnS3 quantum dots (CTS QDs), despite the faster charge mobility and quantum confinement effect, respectively. Herein, a BiOCl/CTS (BCTS) heterostructure was synthesized by loading CTS QDs onto BiOCl 2D nanosheets (NSs), that demonstrated excellent photocatalytic activity under visible light irradiation.

View Article and Find Full Text PDF

Aims: Gut dysbiosis modulates CNS complications and cognitive decline through the gut-brain axis. The study aims to investigate the molecular mechanisms involved in gut dysbiosis-associated cognitive changes and the potential effects of probiotics in high fat-high carbohydrate diet-induced gut dysbiosis-associated neurodegeneration.

Materials And Methods: We used high fat, high-carbohydrate diet (HFHCD) and high-fat diet (HFD) to induce gut dysbiosis-associated neurodegeneration in C57BL/6 mice.

View Article and Find Full Text PDF

Topological magnetic skyrmions with helicity state degrees of freedom in centrosymmetric magnets possess great potential for advanced spintronics applications and quantum computing. Till date, the skyrmion study in this class of materials mostly remains focused to collinear ferromagnets with uniaxial magnetic anisotropy. Here, we present a combined theoretical and experimental study on the competing magnetic exchange-induced evolution of noncollinear magnetic ground states and its impact on the skyrmion formation in a series of centrosymmetric hexagonal noncollinear magnets, MnFeCoGe.

View Article and Find Full Text PDF

Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.

View Article and Find Full Text PDF

-Mn-type chiral cubic CoZnMn(++= 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of CoRuZnMn, a skyrmion-hosting-Mn-type chiral compound. The longitudinal resistivity () exhibits field-insensitive low-temperature minima due to quantum interference effects, driven byT1/2-dependent electron-electron interactions.

View Article and Find Full Text PDF

Cyano-Bridged Bimetallic Polymer Network-Derived PdFe Intermetallic for Aqueous Rechargeable Zinc-Air Batteries.

ACS Appl Mater Interfaces

January 2025

Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.

The rational design and synthesis of bifunctionally active and durable oxygen electrocatalysts have garnered significant attention for electrochemical energy conversion and storage. Intermetallic nanostructures are particularly promising for these applications due to their unique catalytic properties and exceptional durability. In this study, we present a fascinating synthetic approach for the direct synthesis of a bifunctional oxygen electrocatalyst based on nitrogen-doped carbon-encapsulated ordered PdFe (o-PdFe@NC) intermetallic, using a cyano-bridged bimetallic single-source precursor tailored for aqueous rechargeable zinc-air batteries (ZABs).

View Article and Find Full Text PDF

Antiferromagnetic materials offer potential for spintronic applications due to their resilience to magnetic field perturbations and lack of stray fields. Achieving exchange bias in these materials is crucial for certain applications; however, discovering such materials remains challenging due to their compensated spin structure. The quest for antiferromagnetic materials with exchange bias became a reality through our experimental study and theoretical simulation on and .

View Article and Find Full Text PDF

In this paper, we present a detailed investigation of the structural, magnetic, and electrical transport properties of Eu2-xCuxRu2O7 (x = 0, 0.2, 0.4) pyrochlores.

View Article and Find Full Text PDF

We explore how the interplay of finite availability, carrying capacity of particles at different parts of a spatially extended system, and particle diffusion between them control the steady-state currents and density profiles in a one-dimensional current-carrying channel connecting the different parts of the system. To study this, we construct a minimal model consisting of two particle reservoirs of finite carrying capacities connected by a totally asymmetric simple exclusion process (TASEP). In addition to particle transport via TASEP between the reservoirs, the latter can also directly exchange particles via Langmuir kinetics-like processes, modeling particle diffusion between them that can maintain a steady current in the system.

View Article and Find Full Text PDF

The ultraviolet (UV) photodissociation of pyruvic acid through the absorption of solar actinic flux generates methylhydroxycarbene (MHC) in the atmosphere. It is recognized that isolated MHC can undergo unimolecular isomerization to form acetaldehyde and vinyl alcohol. However, the rates and mechanism for its possible bimolecular reactions with atmospheric constituents, which can occur in parallel with its unimolecular reaction, is not well understood.

View Article and Find Full Text PDF

Small RNA sequencing of differentiated astrocytoma exposed to NMOSD patient sera reveals perturbations in neurodegenerative signaling.

Exp Cell Res

January 2025

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, Kolkata, 700 064, West Bengal, India. Electronic address:

The signaling pathways behind severe astrocytic lysis with Aquaporin4 auto-antibody (AQP4-IgG) seropositivity, and reactive astrocytosis with myelin oligodendrocyte glycoprotein auto-antibody (MOG-IgG) seropositivity, remain largely unexplored in Neuromyelitis optica spectrum disorder (NMOSD), while almost no molecular details being known about double-seronegative (DN) patients. Recent discovery of glial fibrillary acidic protein (GFAP) in DN NMOSD patients' cerebrospinal fluid, akin to AQP4-IgG + ve cases, suggests astrocytopathy. Here, we aim to study small non coding RNA (sncRNA) signature alterations in astrocytes exposed to AQP4-IgG + ve and MOG-IgG + ve patient sera, and their potential resemblance with DN-NMOSD.

View Article and Find Full Text PDF

Engineering the surface of metal halide perovskite nanocrystals (MHPNCs) is crucial for optimizing their optical properties, repairing surface defects, enhancing quantum yield, and ensuring long-term stability. These enhancements make surface-engineered MHPNCs ideal for applications in light-emitting devices (LEDs), displays, lasers, and photodetectors, contributing to energy efficiency. This article delves into an introduction to MHPNCs, their structure and types, particularly the ABX type (where A represents monovalent organic/inorganic cations, B represents divalent metal ions mainly Pb metal, and X represents halide ions), synthesis methods, unique optical properties, surface modification techniques using various agents (particularly inorganic molecules/materials, organic molecules, polymers, and biomolecules) to tune optical properties and applications in the aforementioned light-emitting technologies, challenges and opportunities, including advantages and disadvantages of surface-modified APbX MHPNCs, and a summary and future outlook.

View Article and Find Full Text PDF
Article Synopsis
  • The CMS experiment conducted a search for charge-parity violation in decays using proton-proton collision data from 2018, analyzing around 10 billion events with b hadrons decaying into charm hadrons.
  • The flavor of the neutral D meson was determined through the charge of pions in the reconstructed decays, and an asymmetry measurement in the decays was reported, taking into account various uncertainties.
  • This research marks the first asymmetry measurement by the CMS in the charm sector and the first to use a fully hadronic final state in such analyses.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on detecting multijet signatures from proton-proton collisions at a high energy of 13 TeV, analyzing a dataset totaling 128 fb^{-1}.
  • A special data scouting method is utilized to pick out events with low combined momentum in jets.
  • This research is pioneering in its investigation of electroweak particle production in R-parity violating supersymmetric models, particularly examining hadronically decaying mass-degenerate higgsinos, and it broadens the limits on the existence of R-parity violating top squarks and gluinos.
View Article and Find Full Text PDF

This research mainly explores the structural, magnetic, magneto-transport, and magnetocaloric properties of the polycrystalline TbSrMnO compound. The results reveal a significant modification of the compound's ground state with increasing the strength of the magnetic field. The strong distortion in the crystal structure highly controls the magnetic and magneto-transport properties of the system.

View Article and Find Full Text PDF

Understanding the Directed Evolution of a Natural-like Efficient Artificial Metalloenzyme.

J Phys Chem B

December 2024

Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India.

The artificial metalloenzyme containing iridium in place of iron along with four directed evolution mutations C317G, T213G, L69V, and V254L in a natural cytochrome P450 presents an important milestone in merging the extraordinary efficiency of biocatalysts with the versatility of small molecule chemical catalysts in catalyzing a new-to-nature carbene insertion reaction. This is a show-stopper enzyme, as it exhibits a catalytic efficiency similar to that of natural enzymes. Despite this remarkable discovery, there is no mechanistic and structural understanding as to why it displays extraordinary efficiency after the incorporation of the four active site mutations by directed evolution methods, which so far has been intractable to any experimental methods.

View Article and Find Full Text PDF

Nontoxic, stable, and experimentally realized lead-free halide double perovskites, CsAgBiX (X = Br, Cl), attracted much attention for solar cell applications. However, their reduced electronic dimensionality and indirect (wide) bandgap, limiting solar energy absorption efficiency, are not mostly suitable. To address such issues, we employ the computationally efficient DFT-1/2 + SOC method to study the electronic structure of cation-ordered and cation-disordered materials comparatively.

View Article and Find Full Text PDF

The first search for soft unclustered energy patterns (SUEPs) is performed using an integrated luminosity of 138  fb^{-1} of proton-proton collision data at sqrt[s]=13  TeV, collected in 2016-2018 by the CMS detector at the LHC. Such SUEPs are predicted by hidden valley models with a new, confining force with a large 't Hooft coupling. In events with boosted topologies, selected by high-threshold hadronic triggers, the multiplicity and sphericity of clustered tracks are used to reject the background from standard model quantum chromodynamics.

View Article and Find Full Text PDF

Protocol for evaluating extracellular matrix stiffness post-decellularization of triple-negative breast cancer cells using atomic force microscopy.

STAR Protoc

December 2024

Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai, India. Electronic address:

Article Synopsis
  • Atomic force microscopy (AFM) is used in biomedical research to study the mechanical properties of materials, specifically focusing on the stiffness of extracellular matrix (ECM) gels enriched with breast cancer cells.
  • The protocol involves using the PeakForce quantitative nanomechanics technique to measure the elastic modulus and capture images of the gel's surface topology.
  • Understanding how cancer cells influence the stiffness of artificial ECM can help researchers assess their role in tumor development and progression.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how substituting Nd with Sr in the compounds Nd2-xSrCoIrO alters the structural, magnetic, and transport properties due to changes in cation sizes and oxidation states, affecting charge neutrality.
  • - Sr doping leads to increased Co/Ir antisite disorder, changing magnetic interactions from ferrimagnetic to antiferromagnetic, with a suppression of magnetic transitions caused by dilution of Nd-Nd interactions.
  • - The compounds exhibit insulating behavior while hole doping significantly lowers room temperature resistivity, revealing conduction through a three-dimensional Mott's variable range hopping mechanism.
View Article and Find Full Text PDF

The first search for the Z boson decay to ττμμ at the CERN LHC is presented, based on data collected by the CMS experiment at the LHC in proton-proton collisions at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 138  fb^{-1}. The data are compatible with the predicted background. For the first time, an upper limit at the 95% confidence level of 6.

View Article and Find Full Text PDF

Hole-states in Li doped NiO: doping dependence of Zhang-Rice spectral weight.

Phys Chem Chem Phys

November 2024

Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata-700064, India.

We report on structural evolution and a dynamical transfer of spectral weight as observed in O K-edge X-ray absorption (XA) spectra upon hole doping in LiNiO (0 ≤ ≤ 0.24). We find that the unit cell of doped NiO evolves in a specific way up to an intermediate doping level ( = 0.

View Article and Find Full Text PDF

Using proton-proton collision data corresponding to an integrated luminosity of collected by the CMS experiment at , the decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the decay, is measured to be , where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in and .

View Article and Find Full Text PDF

A search for collective effects inside jets produced in proton-proton collisions is performed via correlation measurements of charged particles using the CMS detector at the CERN LHC. The analysis uses data collected at a center-of-mass energy of sqrt[s]=13  TeV, corresponding to an integrated luminosity of 138  fb^{-1}. Jets are reconstructed with the anti-k_{T} algorithm with a distance parameter of 0.

View Article and Find Full Text PDF

Parallel Plate Capacitor Model at the Nanoscale for Stable and Gigantic SERS Activity of the 4-MBA@R-AuNP-4-MBA@R-AuNP System.

ACS Omega

October 2024

Chemical Sciences Division, Saha Institute of Nuclear Physics, A CI of Homi Bhabha National Institute, 1/AF, Salt Lake, Sector- I, Bidhannagar, Kolkata 700064, India.

Selective use of ingredients out of a specific natural product (e.g., fruit, leaf, flower, or honey extract) or their mixture (e.

View Article and Find Full Text PDF