21 results match your criteria: "SRM Institute of Science and Technology (SRM IST)[Affiliation]"

Article Synopsis
  • Chronic kidney disease (CKD) affects about 843 million people worldwide, with increased risk factors like obesity and diabetes contributing to its rise, leading to higher functional difficulties and disabilities among patients.
  • A study conducted at Saint Paul Hospital in Addis Ababa assessed the functional status and disability levels of 302 CKD patients, using face-to-face interviews and the HAQ-DI questionnaire for data collection.
  • Results showed that 72.5% of patients had moderate to severe disabilities, with significant associations found between disability and factors such as age over 50, advanced CKD stages, and musculoskeletal issues.
View Article and Find Full Text PDF

Green synthesis of chitosan nanoparticles using leaf extract: evaluation of antimicrobial, antioxidant, antibiofilm, and cytotoxic activities.

3 Biotech

October 2024

Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603 203 India.

The emerging field of green synthesis within nanobiotechnology presents significant environmental and economic advantages compared to conventional methodologies. This study investigates the synthesis and application of chitosan nanoparticles (ChNPs) using (CF) leaf extract as a sustainable, and bio-based approach. Characterization of CF-ChNPs confirmed effective bioconversion and also demonstrated significant antimicrobial activity.

View Article and Find Full Text PDF

Nitroimidazoles comprise a class of broad-spectrum anti-microbial drugs with efficacy against parasites, mycobacteria, and anaerobic Gram-positive and Gram-negative bacteria. Among these drugs, metronidazole (MTZ) is commonly used with other antibiotics to prevent infection in open fractures. However, the effect of MTZ on bone remains understudied.

View Article and Find Full Text PDF

A review on bio-based polymer polylactic acid potential on sustainable food packaging.

Food Sci Biotechnol

June 2024

Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Chengalpattu District, Kattankulathur, Tamil Nadu 603203 India.

Poly(lactic acid) (PLA) stands as a compelling alternative to conventional plastic-based packaging, signifying a notable shift toward sustainable material utilization. This comprehensive analysis illuminates the manifold applications of PLA composites within the realm of the food industry, emphasizing its pivotal role in food packaging and preservation. Noteworthy attributes of PLA composites with phenolic active compounds (phenolic acid and aldehyde, terpenes, carotenoid, and so on) include robust antimicrobial and antioxidant properties, significantly enhancing its capability to bolster adherence to stringent food safety standards.

View Article and Find Full Text PDF

A comprehensive review of eclectic approaches to the biological synthesis of vanillin and their application towards the food sector.

Food Sci Biotechnol

April 2024

Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Chengalpattu, 603203 India.

Vanillin, a highly regarded flavor compound, has earned widespread recognition for its natural and aromatic qualities, piquing substantial interest in the scientific community. This comprehensive review delves deeply into the intricate world of vanillin synthesis, encompassing a wide spectrum of methodologies, including enzymatic, microbial, and immobilized systems. This investigation provides a thorough analysis of the precursors of vanillin and also offers a comprehensive overview of its transformation through these diverse processes, making it an invaluable resource for researchers and enthusiasts alike.

View Article and Find Full Text PDF

An insight into the utilization of microbial biosurfactants pertaining to their industrial applications in the food sector.

Food Sci Biotechnol

January 2024

Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, Tamil Nadu 603203 India.

Microbial biosurfactants surpass synthetic alternatives due to their biodegradability, minimal toxicity, selective properties, and efficacy across a wide range of environmental conditions. Owing to their remarkable advantages, biosurfactants employability as effective emulsifiers and stabilizers, antimicrobial and antioxidant attributes, rendering them for integration into food preservation, processing, formulations, and packaging. The biosurfactants can also be derived from various types of food wastes.

View Article and Find Full Text PDF

The diverse populations reportedly suffer from obesity on a global scale, and inconclusive evidence has indicated that both environmental and genetic factors are associated with obesity development. Therefore, a need exists to examine potential therapeutic or prophylactic molecules for obesity treatment. Prebiotics with non-digestible oligosaccharides (NDOs) have the potential to treat obesity.

View Article and Find Full Text PDF

Two-dimensional metal-organic framework nanosheets are attractive as peroxidase mimicking nanocatalysts due to their rich chemical functional groups, large surface area, high porosity, and accessible active sites. In this study, we synthesized FeCu bifunctional 2D MOF nanosheets using a solvothermal method. Fe and Cu ions were added as metal precursors, while organic amine and acid served as the organic ligands to construct the FeCu-MOF nanosheets.

View Article and Find Full Text PDF

Despite centuries of developing strategies to prevent food-associated illnesses, food safety remains a significant concern, even with multiple technological advancements. Consumers increasingly seek less processed and naturally preserved food options. One promising approach is food biopreservation, which uses natural antimicrobials found in food with a long history of safe consumption and can help reduce the reliance on chemically synthesized food preservatives.

View Article and Find Full Text PDF

This current study aims to develop a unique biomaterial that can fight against oxidative stress and microbial infections without causing any harm. As a result, an easy-to-make, environment-friendly, long-lasting, and non-toxic copper oxide nanoparticle (CuONP) was synthesized using an edible mushroom Pleurotus citrinopileatus extract. The UV-vis spectroscopy analyses reflected a sharp absorbance peak at 250 nm.

View Article and Find Full Text PDF

A biocatalytic membrane offers an ideal alternative to the conventional treatment process for the removal of toxic pentachlorophenol (PCP). The limelight of the study is to utilize superparamagnetic iron oxide nanoparticles (SPIONs) incorporated (poly (methyl vinyl ether-alt-maleic acid) (PMVEAMA) and poly (ether - ether) sulfone (PEES)) membrane for immobilization of laccase and its application towards the removal of PCP. In regard to immobilization of Tramates versicolor laccase onto membranes, 5 mM glutaraldehyde with 10 h cross-linking time was employed, yielding 76.

View Article and Find Full Text PDF

A systematic review on selection characterization and implementation of probiotics in human health.

Food Sci Biotechnol

March 2023

Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), 603 203, Kattankulathur, India.

Probiotics are live bacteria found in food that assist the body's defence mechanisms against pathogens by reconciling the gut microbiota. Probiotics are believed to aid with gut health, the immune system, and brain function, among other factors. They've furthermore been shown to help with constipation, high blood pressure, and skin issues.

View Article and Find Full Text PDF

Development of engineered probiotics with tailored functional properties and their application in food science.

Food Sci Biotechnol

March 2023

Integrated Bioprocessing Laboratory, School of Bioengineering, Department of Biotechnology, SRM Institute of Science and Technology (SRM IST), Tamil Nadu 603 203 Kattankulathur, India.

The potential health benefits of probiotics may not be cognized because of the substantial curtailment in their viability during food storage and passage through the gastrointestinal system. Intestinal flora composition, and resistance against pathogens are among the health benefits associated with probiotic consumption. In the gastric environment, pH 2.

View Article and Find Full Text PDF

In this current study, poly (methyl vinyl ether maleic anhydride) (PMVEAMA), a sustainable additive, was incorporated into poly (ether-ether sulfone) (PEES) polymer to design a novel polymeric hybrid membrane for the efficient filtration of toxic pentachlorophenol (PCP) from an aqueous medium. Hydrophilic additives significantly altered the membrane's morphology, structure, porosity, water content, and flux performance compared to the bare PEES membrane. The influence of PMVEAMA on the structural modification of the synthesized polymer membrane was confirmed by SEM, ATR-FTIR, XRD, AFM, zeta potential and contact angle.

View Article and Find Full Text PDF

Laccase production by Pleurotus ostreatus using cassava waste and its application in remediation of phenolic and polycyclic aromatic hydrocarbon-contaminated lignocellulosic biorefinery wastewater.

Environ Pollut

September 2022

Integrated Bioprocessing Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology (SRM IST), Kattankulathur, 603 203, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641050, India.

The treatment of contaminants from lignocellulosic biorefinery effluent has recently been identified as a unique challenge. This study focuses on removing phenolic contaminants and polycyclic aromatic hydrocarbons (PAHs) from lignocellulosic biorefinery wastewater (BRW) applying a laccase-assisted approach. Cassava waste was used as a substrate to produce the maximum yield of laccase enzyme (3.

View Article and Find Full Text PDF

Owing to the global industrialization, a new generation of pharmaceutical pollutants with high toxicity and persistency have been detected. In the present study, silica microspheres, a promising adsorbent has been employed to investigate the extent of removal of prevalent therapeutic acetaminophen, an emerging micropollutant, from wastewater in isolated batch experiments. The BET surface area of the adsorbent was 105.

View Article and Find Full Text PDF

Laccase-Driven Transformation of High Priority Pesticides Without Redox Mediators: Towards Bioremediation of Contaminated Wastewaters.

Front Bioeng Biotechnol

February 2022

University of Sherbrooke Water Research Group, Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC, Canada.

In this study, was grown on municipal biosolids (BS) as the substrate to produce laccase for the removal of pesticides (fungicides, herbicides, and insecticides) from wastewater. Among the various types of BS tested, sterilized biosolids were the most promising substrate for laccase production by with a maximal laccase activity (162.1 ± 21.

View Article and Find Full Text PDF

The novelty of this study deals with the biocatalytic treatment of trace organic contaminants (TrOCs) from municipal wastewater by insolubilized laccase. Laccase from Trametes versicolor was aggregated by three-phase partitioning technique followed by cross-linking with glutaraldehyde to produce insolubilized laccase as cross-linked enzyme aggregates (CLEAs). The optimal conditions for CLEAs preparation include ammonium sulphate concentration of 83% (w/v), crude to t-butanol ratio of 1.

View Article and Find Full Text PDF

Biocatalytically synthesized mono-rhamnolipids are eco-friendly surfactants that exhibit strong industrial applications owing to their low toxicity and biodegradability as well as their efficient antimicrobial and surface tension reduction potential. In this present study, novel adsorbent chitosan encapsulated magnetic nanoparticles coated with rhamnolipids (Rh-cMNP) were prepared and used for the adsorption of the micropollutant acetaminophen. The SEM, FTIR, and VSM results showed that Rh-cMNP had abundant functional groups with a mesoporous feature and easy separation of the magnetic nanosorbent from the reaction mixture.

View Article and Find Full Text PDF

Membrane fouling is one of the challenging bottleneck problems in waste water treatment by membrane process. The present study constructed a nanofiltration membrane based on the zinc oxide nanoparticle (n-ZnO) integrated Poly(ether ether sulfone) (PEES) membranes. The developed membranes were characterized by X-ray diffraction (XRD), attenuated total reflectance - fourier transform infrared spectroscopy (AT-FTIR), atomic force microscopy (AFM) and scanning electron microscope (SEM) coupled with energy dispersive X-ray (EDX) analysis.

View Article and Find Full Text PDF

In the present study, highly pure rhamnolipids (RLs) was produced using biocatalysts immobilized on amino-functionalized chitosan coated magnetic nanoparticles. Upon immobilizing naringinase and Candida antarctica lipase B (CaLB) under the optimized conditions, an enhanced operational stability with biocatalytic loads of 935 ± 2.4 U/g (naringinase) and 825 ± 4.

View Article and Find Full Text PDF