736 results match your criteria: "SKKU Advanced Institute of Nanotechnology (SAINT)[Affiliation]"
Adv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea.
Molecular diagnosis limitations, including complex treatment processes, low cost-effectiveness, and operator-dependent low reproducibility, interrupt the timely prevention of disease spread and the development of medical devices for home and outdoor uses. A newly fabricated gold nanopillar array-based film is presented for superior photothermal energy conversion. Magnifying the metal film surface-to-volume ratio increases the photothermal energy conversion efficiency, resulting in a swift reduction in the gene amplification reaction time.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.
View Article and Find Full Text PDFACS Nano
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea.
In modern digital systems, sequential logic circuits store and process information over time, whereas combinational logic circuits process only the current inputs. Conventional sequential systems, however, are complex and energy-inefficient due to the separation of volatile and nonvolatile memory components. This study proposes a compact, nonvolatile, and reconfigurable van der Waals (vdW) ferroelectric field-effect transistor (FeFET)-based sequential logic-in-memory (S-LiM) unit that performs sequential logic operations in two nonvolatile states.
View Article and Find Full Text PDFACS Nano
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
Half-metallic magnetism, characterized by metallic behavior in one spin direction and semiconducting or insulating behavior in the opposite spin direction, is an intriguing and highly useful physical property for advanced spintronics because it allows for the complete realization of 100% spin-polarized current. Particularly, half-metallic antiferromagnetism is recognized as an excellent candidate for the development of highly efficient spintronic devices due to its zero net magnetic moment combined with 100% spin polarization, which results in lower energy losses and eliminates stray magnetic fields compared to half-metallic ferromagnets. However, the synthesis and characterization of half-metallic antiferromagnets have not been reported until now as the theoretically proposed materials require a delicate and challenging approach to fabricate such complex compounds.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-gu, Pohang, 37673, Republic of Korea.
The evaporation of drops on solid surfaces is a ubiquitous natural phenomenon, and their dynamics play a pivotal role in many biological, environmental, and industrial processes. However, the complexity of the underlying mechanisms has largely confined previous studies to liquid drop evaporation under atmospheric conditions. In this study, the first comprehensive investigation of the evaporation dynamics of conducting polymer-containing drops under controlled vacuum environments is presented.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
The limited operational lifetime of quantum-dot light-emitting diodes (QLEDs) poses a critical obstacle that must be addressed before their practical application. Specifically, cadmium-free InP-based QLEDs, which are environmentally benign, experience significant operational degradation due to challenges in charge-carrier confinement stemming from the composition of InP quantum dots (QDs). This study investigates the operational degradation of InP QLEDs and provides direct evidence of the degradation process.
View Article and Find Full Text PDFSmall
December 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Among 2-dimensional (2D) non-layered transition-metal chalcogenides (TMCs), cobalt sulfides are highly interesting because of their diverse structural phases and unique properties. The unique magnetic properties of TMCs have generated significant interest in their potential applications in future spintronic devices. In addition, their high conductivity, large specific surface area, and abundant active sites have attracted attention in the field of catalysis.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea.
Negative differential transconductance (NDT) devices have emerged as promising candidates for multivalued logic computing, and particularly for ternary logic systems. To enable computation of any ternary operation, it is essential to have a functionally complete set of ternary logic gates, which remains unrealized with current NDT technologies, posing a critical limitation for higher-level circuit design. Additionally, NDT devices typically rely on heterojunctions, complicating fabrication and impacting reliability due to the introduction of additional materials and interfaces.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea.
When crystalline materials are investigated by performing first-principles density functional theory (DFT) calculations, the reciprocal grid should be fine enough to obtain the converged total energy and electronic structure. Herein, we performed a convergence test of the total energy for the density of reciprocal points to determine fine enough reciprocal grids for high-throughput calculations. Our results show that the nonlinearity of the band structures affects the convergence of the total energy, especially for materials with a finite band gap.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
The reduced structural complexity of atomically thin amorphous carbons makes it suitable for semiconductor technology. Inherent challenges arise from transfer processes subsequent to growth on metallic substrates, posing significant challenges to the accurate characterization of amorphous materials, thereby compromising the reliability of spectroscopic analysis. Here this work presents a novel approach: direct growth of ultra-thin amorphous carbon with tuned disorder on a dielectric substrate (SiO/Si) using photochemical reaction and thermal annealing process with a solid precursor.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, 48109, USA.
Efficient light generation from triplet states of organic molecules has been a hot yet demanding topic in academia and the display industry. Herein, we propose a strategy for developing triplet emitter by creating heterostructures of organic chromophores and transition metal dichalcogenides (TMDs). These heterostructures emit microsecond phosphorescence at room temperature, while their organic chromophores intrinsically exhibit millisecond phosphorescence under vibration dissipation-free conditions.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Adv Mater
November 2024
Department of Nano Science and Technology and Department of Nanoengineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, Republic of Korea.
ACS Appl Mater Interfaces
December 2024
Center for NanoBio Development, National NanoFab Center, Daejeon 34141, Republic of Korea.
Ingestible devices (ID) provide a safe and noninvasive method for monitoring, diagnosing, and delivering drugs to specific sites in the human body, particularly within the gastrointestinal (GI) tract. However, the GI environment is highly acidic and humid, which can cause IDs to fail, and their corrosion in the acidic environment can cause leaching of toxic metal ions, thereby substantially limiting their long-term use. Thus, an efficient method is required to protect IDs, especially in the chemically and mechanically harsh GI environment.
View Article and Find Full Text PDFSmall Methods
November 2024
Clean Energy Research Center, Korea Institute of Science and Technology, Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
The presence of oxygen vacancies (V) in electrocatalysts plays a significant role in improving the selectivity and activity of CO reduction reaction (CORR). In this study, 1D material with large surface area is utilized to enable uniform V formation on the catalyst. 1D structured indium selenoiodide (InSeI) is synthesized and used as an electrocatalyst for the conversion of CO to formate.
View Article and Find Full Text PDFAdv Mater
November 2024
Department of Nano Engineering, Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
Nat Commun
November 2024
School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, Republic of Korea.
ACS Nano
November 2024
Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
ACS Sens
November 2024
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
Selective detection and monitoring of hazardous gases with similar properties are highly desirable to ensure human safety. The development of flexible and room-temperature (RT) operable chemiresistive gas sensors provides an excellent opportunity to create wearable devices for detecting hazardous gases surrounding us. However, chemiresistive gas sensors typically suffer from poor selectivity and zero-cross selectivity toward similar types of gases.
View Article and Find Full Text PDFAdv Mater
October 2024
Department of Electrical and Computer Engineering, Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Nanoscale
November 2024
School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Korea.
ACS Appl Bio Mater
November 2024
Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Science, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea.
ACS Appl Mater Interfaces
October 2024
School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea.
Adv Mater
November 2024
SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, and Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.