12 results match your criteria: "SACLANT Undersea Research Centre[Affiliation]"

Closed-form expressions for two-way propagation and reverberation in variable depth ducts are derived for isovelocity water by using ray invariants and acoustic flux. These expressions include the transition to single mode propagation at long range. Three surface scattering laws are considered: Lambert, Lommel-Seeliger, and angle independent, and these are compared with a point target to give explicit signal-to-reverberation ratios.

View Article and Find Full Text PDF

A theory is developed for generating short time, monostatic reverberation realizations caused by three-dimensionally distributed volume inhomogeneities in stratified media. A wave number integral approach to treating the propagation to and from the scatterers, combined with a two-dimensional spectral representation of the azimuthally averaged scatterer realizations and a novel numerical implementation, combine to yield an efficient, high fidelity reverberation simulator for predicting monostatic backscatter from horizontally stratified sediments.

View Article and Find Full Text PDF

The use of low-frequency sonars (2-15 kHz) is explored to better exploit scattering features of buried targets that can contribute to their detection and classification. Compared to conventional mine countermeasure sonars, sound penetrates better into the sediment at these frequencies, and the excitation of structural waves in the targets is enhanced. The main contributions to target echo are the specular reflection, geometric diffraction effects, and the structural response, with the latter being particularly important for man-made elastic objects possessing particular symmetries such as bodies of revolution.

View Article and Find Full Text PDF

The MAPEX2000 experiments were conducted in the Mediterranean Sea in March, 2000 to determine seabed properties using a towed acoustic source and receiver array. Towed systems are advantageous because they are easy to deploy from a ship and the moving platform offers the possibility for estimating spatially variable (range-dependent) seabed properties. In this paper, seabed parameters are determined using a matched-field geoacoustic inversion approach with measured, towed array data.

View Article and Find Full Text PDF

The vertical directionality of ambient noise is strongly influenced by seabed reflections. Therefore, potentially, geoacoustic parameters can be inferred by inversion of the noise. In this approach, using vertical array measurements, the reflection loss is found directly by comparing the upward- with the downward-going noise.

View Article and Find Full Text PDF

Fine-grained water saturated sediments like silty clays have the curious property that the speed of sound through its bulk medium is lower than that of the interstitial pore fluid. When a fine-grained sediment is at the water-sediment interface, classical theory predicts that there is an angle at which the reflection coefficient is zero, and there is total transmission of sound into the seabed. This angle is called the angle of intromission and has been directly observed at the seafloor only rarely.

View Article and Find Full Text PDF

In situ measurements of scattering strength are often obtained by analyzing the early-time, high-angle reverberation from bottom and subbottom features. In order to provide insight into the mechanisms which cause bottom reverberation, and to their distinguishing characteristics, it is necessary to have a capability for modeling both the rough surface and the volume scattering mechanisms. For high-angle, early-time backscatter, the most appropriate approach is to use a spectral integral representation, which naturally includes the continuous spectrum important for this angular regime.

View Article and Find Full Text PDF

Sonar performance predictions of reverberation in shallow water rely upon good estimates of the bottom-scattering strength. However, little is understood about bottom scattering in shallow water in the frequency range 400-4000 Hz, particularly its dependency upon frequency and its relationship to the physical properties of the seafloor. In order to address these issues, a new measurement technique has been developed to probe the frequency and angular dependency of bottom-scattering strength.

View Article and Find Full Text PDF

Understanding the basic physics of sound penetration into ocean sediments is essential for the design of sonar systems that can detect, localize, classify, and identify buried objects. In this regard the sound speed of the sediment is a crucial parameter as the ratio of sound speed at the water-sediment interface determines the critical angle. Sediment sound speed is typically measured from core samples using high frequency (100's of kHz) pulsed travel time measurements.

View Article and Find Full Text PDF

Pressure-time series from breathing-mode oscillation of large (centimeter scale or larger) underwater bubbles reveal much higher decay rates than can be explained using viscous, thermal, or radiative mechanisms which apply to microbubbles. It is shown that if one assumes energy transfer to shape oscillations (surface capillary waves) of large amplitude in subharmonic resonance with the breathing mode [M. S.

View Article and Find Full Text PDF

High-resolution geoacoustic data are required for accurate predictions of acoustic propagation and scattering in shallow water. Since direct measurement of geoacoustic data is difficult, time-consuming, and expensive, inversion of acoustic data is a promising alternative. However, the main problem encountered in geoacoustic inversion is the problem of uniqueness, i.

View Article and Find Full Text PDF

This paper presents preliminary results of a recent study whose overall objectives are to determine the mechanisms contributing significantly to subcritical acoustic penetration into ocean sediments, and to quantify the results for use in sonar performance prediction for the detection of buried objects. In situ acoustic measurements were performed on a sandy bottom whose geoacoustical and geomorphological properties were also measured. A parametric array mounted on a tower moving on a rail was used to insonify hydrophones located above and below the sediment interface.

View Article and Find Full Text PDF