18 results match your criteria: "S. P. Mandali's Sir Parashurambhau College[Affiliation]"

In pursuit of novel antidiabetic agents to combat type II diabetes mellitus, our study focused on identifying pharmacophoric features responsible for PPAR-γ expression, a key regulator of glucose homeostasis and lipid metabolism. This goal was achieved through pharmacophore model generation and screening of rationally designed library of thiazolidine-2,4-dione hybrids (7a-7f). The top hits were synthesized, characterized, and evaluated for their in vitro and in vivo antidiabetic activities.

View Article and Find Full Text PDF

Antimicrobial resistance threatens the efficacious prevention and treatment of infectious diseases caused by microorganisms. To combat microbial infections, the need for new drug candidates is essential. In this context, the design, synthesis, antimicrobial screening, and study of a new series of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole () have been reported.

View Article and Find Full Text PDF

Multidrug-resistant fungal infections have become much more common in recent years, especially in immune-compromised patients. Therefore, researchers and pharmaceutical professionals have focused on the development of novel antifungal agents that can tackle the problem of resistance. In continuation to this, a novel series of pyrazole-bearing pyrido[2,3-]pyrimidine-2,4(1,3)-dione derivatives (-) have been developed.

View Article and Find Full Text PDF

The Matalon-Packter (MP) empirical law of periodically precipitating (Liesegang phenomenon) systems under non-equilibrium conditions describes the dependence of the periodicity (spacing coefficient) on the initial concentration of the outer electrolyte. We aim to present the MP law in a more generalized form using a realistic approach wherein mass transfer in the gel column plays a role instead of the initial concentrations. This work is an attempt to make such progress.

View Article and Find Full Text PDF

A new series of N-aryl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine, (8a-x) have been synthesized by a cyclo-condensation reaction of 2-bromo-1-(1,3-diphenyl-1H-pyrazol-4-yl)ethanone (6a-f) with N-aryl thiourea, (7a-d). The structure of newly synthesized N-aryl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine, (8a-x) derivatives was analyzed by H NMR, C NMR and Mass spectral analysis. The compounds 8a-x were screened for in vitro antimicrobial activity against Escherichia coli, Proteus mirabilis, Bacillus subtilis, Staphylococcus aureus, Candida albicans and Aspergillus niger.

View Article and Find Full Text PDF

A new series of 1-((1-(4-substituted benzyl)-1-1,2,3-triazol-4-yl)methoxy)-2-(2-substituted quinolin-4-yl)propan-2-ol () have been synthesized. The newly synthesized 1,2,3-triazolyl-quinolinyl-propan-2-ol () derivatives were screened for antimicrobial activity against H37Rv, , , , and . Most of the compounds showed good to moderate antibacterial activity and all derivatives have shown excellent to good antitubercular activity with MIC 0.

View Article and Find Full Text PDF

Synthesis of 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol as potential antimycobacterial agents.

Chem Zvesti

February 2023

Department of Chemistry, S. P. Mandali's Sir Parashurambhau College (Affiliated to, Savitribai Phule Pune University), Tilak Road, Pune, 411030 India.

Unlabelled: Resistance to antibiotic drugs has directed global health security to a life-threatening situation due to mycobacterial infections. In search of a new potent antimycobacterial, a series of (±) 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol () have been synthesized. The structures of the newly synthesized derivatives were characterized by spectrometric analysis.

View Article and Find Full Text PDF

A new series of 2-(5-aryl-1-phenyl-1-pyrazol-3-yl)-4-aryl thiazoles (-) have been synthesized by a cyclocondensation reaction of 5-aryl-1-phenyl-1-pyrazole-3-carbothioamide (-) with substituted phenacyl bromide (-). The structure of newly synthesized 2-(5-aryl-1-phenyl-1-pyrazol-3-yl)-4-aryl thiazole (-) derivatives was characterized by spectroscopic analysis. The compounds - were evaluated for antibacterial activity against (NCIM 2574), (NCIM 2388), (NCIM 2063), (NCIM 2178), and antifungal activity against (ATCC 504) and (NCIM 3100).

View Article and Find Full Text PDF

Self-organization of regular band patterns of the precipitate via a reaction-diffusion (RD) framework is called Liesegang phenomenon. This non-equilibrium system is emerging as an efficient method for synthesizing materials with unique morphologies that may have desired properties. The formation of continuous precipitation inside a band with poor control over the shape and size of sparingly soluble salts has been well documented.

View Article and Find Full Text PDF

Microbial infections remain a grave threat to global health security due to increasing antibiotic resistance. The coronavirus pandemic has increased the risk of microbial infection. To combat these infections, the search for new therapeutic agents is in high demand.

View Article and Find Full Text PDF

Fe(II)-mediated Fenton process is commonly employed for oxidative degradation of recalcitrant pollutants in wastewater. However, the method suffers from limitations like narrow working pH range and iron sludge formation. The present work deals with the degradation of Methylene Blue (MB) dye using Fenton-like oxidation by replacing Fe(II) with Cr(VI), which eliminates the limitations of classical Fenton oxidation.

View Article and Find Full Text PDF

To search for potent antimycobacterial lead compounds, a new series of 3-substituted phenyl-2-(2-(substituted phenyl)thiazol-4-yl) thiazolidin-4-one (5a-t) derivatives have been synthesized by the condensation of 2-substituted phenyl thiazole-4-carbaldehyde with aromatic amine followed by cyclocondensation with thioglycolic acid. The structure of the newly synthesized 2-(thiazol-4-yl)thiazolidin-4-one derivatives were characterized by the spectroscopic analysis. The synthesized compounds were screened for antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MTB) (ATCC 25177) and Mycobacterium bovis BCG (BCG, ATCC 35743).

View Article and Find Full Text PDF

In the present study, a method is described for precise determination of spatial characteristics of Liesegang bands formed by employing a classical 1D setup using a web-based free resource (https://www.ginifab.com/feeds/pms/color_picker_from_image.

View Article and Find Full Text PDF

Revert Banding in One-Dimensional Periodic Precipitation of the (AgNO + KBr) System in Agar Gel.

ACS Omega

August 2019

Post Graduate and Research Center, Department of Chemistry, MES Abasaheb Garware College (affiliated to Savitribai Phule Pune University, formerly University of Pune), Karve Road, Pune 411 004, Maharashtra, India.

A periodically precipitating system wherein interband distance successively decreases is known as revert Liesegang banding. The phenomenon is rare, and the underlying mechanism is implicit. In the present paper, the Liesegang system comprising of AgNO and KBr as the outer and inner electrolyte pair showing revert banding in agar gel by employing a 1D experimental setup is studied under varying concentrations of participating species.

View Article and Find Full Text PDF

Synthesis of new thiazolyl-pyrazolyl-1,2,3-triazole derivatives as potential antimicrobial agents.

Eur J Med Chem

October 2019

Savitribai Phule Pune University, Post-Graduate Department of Chemistry, S. P. Mandali's Sir Parashurambhau College, Tilak Road, Pune, 411 030, India. Electronic address:

A series of 1-substituted benzyl-4-[1-phenyl-3-(4-methyl-2-aryl-1,3-thiazol-5-yl)-1H-pyrazol-4-yl]-1H-1,2,3-triazole derivatives (7a-y) have been synthesized by click reaction of 5-(4-ethynyl-1-phenyl-1H-pyrazol-3-yl)-4-methyl-2-aryl-1,3-thiazole (5a-e) with substituted benzyl azide. The starting compounds 5-(4-ethynyl-1-phenyl-1H-pyrazol-3-yl)-4-methyl-2-aryl-1,3-thiazole (5a-e) were synthesized from corresponding 3-(4-methyl-2-aryl-1,3-thiazol-5-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde (3a-e) by using Ohira-Bestmann reagent. All newly synthesized thiazolyl-pyrazolyl-1,2,3-triazole derivatives were screened for antibacterial activity against two Gram negative strains, Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), a Gram positive strain Staphylococcus albus (NCIM 2178) and in vitro antifungal activity against Candida albicans (NCIM 3100), Aspergillus niger (ATCC 504) and Rhodotorula glutinis (NCIM 3168).

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) is an obligate aerobe that is capable of long-term persistence under conditions of low oxygen tension. A series of thiazolyl-pyrazole derivatives (6a-f, 7a-f, 8c, 8e) were screened for antimycobacterial activity against dormant M. tuberculosis H37Ra (D-MTB) and M.

View Article and Find Full Text PDF

In the present study a series of 4-methyl-2-aryl-5-(2-aryl/benzyl thiazol-4-yl) oxazole (4a-v) have been synthesized and evaluated for their preliminary antitubercular, antimicrobial and cytotoxicity activity. Among all the synthesized compounds, 4v reported comparable activity against dormant M. tuberculosis HRa and M.

View Article and Find Full Text PDF

A series of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyl derivatives, 25-64 were synthesized and evaluated for inhibitory activity against Mycobacterium smegmatis MC(2) 155 strain and antimicrobial activities against four pathogenic bacteria Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Proteus vulgaris. Among them, compounds 40, 49, 50, and 54 exhibited moderate to good inhibition on the growth of the bacteria Mycobacterium smegmatis at the concentration of 30 μM. Compounds 26, 40, 44, 54 and 56 exhibited moderate to good antibacterial activity.

View Article and Find Full Text PDF