761 results match your criteria: "S N Bose National Centre for Basic Sciences[Affiliation]"
Front Chem
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, India.
Noninvasive diagnosis of human diseases relies on the detection of molecular markers (probes) in a painless manner. Although extrinsic and intrinsic molecular markers are often used, intrinsic disease probes (molecular markers) are preferable because they are naturally present in our body, and deviation in their concentration from normal levels clearly indicates anomalies in human bodies, that is, diseases. In this study, we report noninvasive spectroscopic measurements of total haemoglobin (Hb), bilirubin, and the ratio of oxy- and deoxyhaemoglobin as disease markers for anaemia, jaundice, and oxygen deficiency, respectively, using a meticulously designed optical fibre probe.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata-700106, India.
Herein, we investigated the carrier-phonon relaxation process in a two-dimensional (2D) BAPbBr perovskite and its heterostructure with MoS. Energy transfer was observed in the van der Waals heterostructure of 2D perovskite and monolayer MoS, leading to enhancement in the photoluminescence intensity of MoS. Femtosecond pump-probe spectroscopy was used to study the carrier and lattice dynamics of pristine 2D materials and their heterostructure.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
Estimating rare event kinetics from molecular dynamics simulations is a non-trivial task despite the great advances in enhanced sampling methods. Weighted Ensemble (WE) simulation, a special class of enhanced sampling techniques, offers a way to directly calculate kinetic rate constants from biased trajectories without the need to modify the underlying energy landscape using bias potentials. Conventional WE algorithms use different binning schemes to partition the collective variable (CV) space separating the two metastable states of interest.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, J. D. Block, Sec.III, Salt Lake, Kolkata, West Bengal 700 098, India.
We investigated the temperature dependence of the intermolecular dynamics, including intermolecular vibrations and collective orientational relaxation, of one of the most typical deep eutectic solvents, reline, using femtosecond Raman-induced Kerr effect spectroscopy (fs-RIKES), subpicosecond optical Kerr effect spectroscopy (ps-OKES), and molecular dynamics (MD) simulations. According to fs-RIKES results, the temperature-dependent intermolecular vibrational band peak at ∼90 cm exhibited a redshift with increasing temperature. The density-of-state (DOS) spectrum of reline by MD simulations reproduced this fs-RIKES spectral feature.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
The conversion of solar energy into chemical energy or high-value chemicals has attracted considerable research interest in the context of the global energy crisis. Hydrogen peroxide (HO) is a versatile and powerful oxidizing agent widely used in chemical synthesis and medical disinfection. HO also serves as a clean energy source in fuel cells, generating electricity with zero-carbon emissions.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus of Mumbai University, Santacruz (E), Mumbai 400098, India.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India.
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ () was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy) () to synthesize an N-stapled short peptide-Rubpy conjugate (). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT).
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata, 700106, India.
Mass-fraction-optimized heterojunction composites featuring precisely engineered interfaces and mesoporous structures are crucial for improving light absorption, minimizing electron-hole recombination, and boosting overall catalytic efficiency. Herein, highly efficient mesoporous-NiFeO@g-CN heterojunctions were developed by embedding p-type NiFeO nanoparticles (NPs) within n-type porous ultrathin g-CN (p-uCN) nanosheets. The optimized NiFeO@g-CN, loaded with 20 wt % magnetic counterparts, exhibits exceptional photocatalytic methylene blue (MB) degradation, achieving the highest performance in both photocatalytic and photo-Fenton processes with rate constants of 0.
View Article and Find Full Text PDFPhys Rev E
November 2024
Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India.
Characterizing current fluctuations in a steady state is of fundamental interest and has attracted considerable attention in the recent past. However, the bulk of the studies are limited to systems that either do not exhibit a phase transition or are far from criticality. Here we consider a symmetric zero-range process on a ring that is known to show a phase transition in the steady state.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.
Creating van der Waals (vdW) homojunction devices requires materials with narrow bandgaps and high carrier mobilities for bipolar transport, which are crucial for constructing fundamental building blocks like diodes and transistors in a 2D architecture. Following the recent discovery of elemental 2D tellurium, here, we systematically investigate the electrical transport and flicker noise of hydrothermally grown multilayer tellurium field effect transistors. While the devices exhibit a dominant p-type behavior with high hole mobilities up to ∼242 cm V s at room temperature and almost linear current-voltage characteristics down to 77 K, ambipolar behavior was observed in some cases.
View Article and Find Full Text PDFAdv Mater
December 2024
Functional Materials, Institute of Chemistry, Technische Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany.
The global energy crisis and environmental concerns are driving research into renewable energy and sustainable energy conversion and storage technologies. Solar energy, as an ideal sustainable resource, has significant potential to contribute to the goal of net-zero carbon emissions if effectively harnessed and converted into a reliable and storable form of energy. Photocatalysts have the potential to convert sunlight into chemical energy carriers.
View Article and Find Full Text PDFUltrasonics
November 2024
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 106, India. Electronic address:
Surface acoustic waves have emerged as one of the potential candidates for the development of next-generation wave-based information and computing technologies. For practical devices, it is essential to develop the excitation techniques for different types of surface acoustic waves, especially at higher microwave frequencies, and to tailor their frequency versus wave vector characteristics. We show that this can be done by using ultrashort laser pulses incident on the surface of a multilayer decorated with a periodic array of metallic nanodots.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Chemical and Biological Sciences (CBS), S. N. Bose National Centre for Basic Sciences, Block-JD, Sector III, Salt Lake, Kolkata 700106, India.
J Phys Condens Matter
November 2024
Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstr. 8-10/134, Wien, 1040, AUSTRIA.
The transition from planar (2D) to three-dimensional (3D) magnetic nanostructures represents a significant advancement in both fundamental research and practical applications, offering vast potential for next-generation technologies like ultrahigh-density storage, memory, logic, and neuromorphic computing. Despite being a relatively new field, the emergence of 3D nanomagnetism presents numerous opportunities for innovation, prompting the creation of a comprehensive roadmap by leading international researchers. This roadmap aims to facilitate collaboration and interdisciplinary dialogue to address challenges in materials science, physics, engineering, and computing.
View Article and Find Full Text PDFLangmuir
December 2024
Department of Chemical and Biological Sciences S.N. Bose National Centre for Basic Sciences Block-JD, Sector-III, Salt Lake Kolkata-700106, India.
We report an instantaneous room-temperature phase separation of 1 mM bovine serum albumin solution in the presence of (20% acetic acid+0.2 M NaCl), a routinely used food preservative; an opaque liquid-like phase (L) coexists in equilibrium with a granular gel like phase (G). Interestingly, neither 20% acetic acid nor 0.
View Article and Find Full Text PDFNanoscale
December 2024
Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India.
Applications of photoluminescence (PL) from semiconductor quantum dots (QDs) have faced the dichotomy of excitonic emission being susceptible to self-absorption and shallow defects reducing quantum yield (QY) catastrophically, and doped emissions sacrificing the tunability of the emission wavelength a quantum size effect, making it extremely challenging, if not impossible, to optimize all desirable properties simultaneously. Here we report a strategy that simultaneously optimizes all desirable PL properties in CdS QDs by leveraging interface engineering through the growth of two crystallographic phases, namely wurtzite and zinc blende phases, within individual QDs. These engineered interfaces result in sub-bandgap emissions ultrafast energy transfer (∼780 fs) from band-edge states to interface states protected from surface defects, enhancing stability and prolonging the PL lifetime.
View Article and Find Full Text PDFPhys Rev E
October 2024
S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India.
We study the nonequilibrium stationary state of a one-dimensional inertial run-and-tumble particle (IRTP) trapped in a harmonic potential. We find that the presence of inertia leads to two distinct dynamical scenarios, namely, overdamped and underdamped, characterized by the relative strength of the viscous and the trap timescales. We also find that inertial nature of the active dynamics leads to the particle being confined in specific regions of the phase plane in the overdamped and underdamped cases, which we compute analytically.
View Article and Find Full Text PDFChemMedChem
November 2024
Department of Zoology, Uluberia College, University of Calcutta, Uluberia, Howrah, 711315, India.
Here, we present a pleiotropic nanomedicine-a smart, functionalized redox buffering nanoparticle-that may be used to treat hematological diseases, associated splenic hyperplasia, and issues related to restricted erythropoiesis. With a diameter of 5-7 nm, the spherical nanomaterial is made of manganese oxide and citrate. Here, we have produced the novel nanomaterial and, using cutting-edge electron microscopic and spectroscopic techniques, extensively assessed its redox buffering potential in vitro with its structural integrity.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2024
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700106, India.
Acetylcholinesterase (AChE) has emerged as an important drug target for the treatment of neurodegenerative disorders such as Alzheimer's disease (AD). Recent experimental studies indicate that certain antidiabetic drugs can be repurposed as potent AChE inhibitors. Enzymatic kinetic assays suggest that the antidiabetic drug chlorpropamide (CPM) acts as a noncompetitive inhibitor, but the mechanism of action and the binding site(s) of interaction with AChE are not known.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2024
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Kolkata, West Bengal 700106, India.
Magnetic topological semimetals are manifestations of the interplay between electronic and magnetic phases of matter, leading to peculiar characteristics such as the anomalous Hall effect (AHE) and the topological Hall effect (THE). MnSn is a time-reversal symmetry-broken magnetic Weyl semimetal showing topological characteristics within the Kagome lattice network. This study reveals a large THE in MnSn (6% Mn deficit MnSn) at room temperature in the-plane, despite being an antiferromagnet.
View Article and Find Full Text PDFHeliyon
October 2024
Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Kolkata, 700106, India.
J Phys Condens Matter
October 2024
Department of Condensed Matter Physics and Materials Science S. N. Bose National Centre for Basic Sciences, Kolkata 70098, India.
One of the most important phenomena in magnetism is the exchange interaction between magnetic centres. In this topical review, we focus on the exchange mechanism in transition-metal compounds and establish kinetic-energy-driven two-sublattice double-exchange as a general mechanism of exchange, in addition to well-known mechanisms like superexchange and double exchange. This mechanism, which was first proposed (Sarma20002549), in the context of SrFeMoO, a double-perovskite compound, later found to describe a large number of 3d and 4d or 5d transition metal-based double perovskites.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2024
Department of Chemical and Biological Sciences, S.N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India.
Since the proposition of the Hofmeister series, guanidinium (Gdm) salts hold a special mention in protein science owing to their contrasting effect on protein(s) depending on the counteranion(s). For example, while GdmCl is known to act as a potential protein denaturant, GdmSO offers minimal effect on protein structure. Despite the fact that theoretical studies reckon the formation of ion-pairing to be responsible for such behavior, experimental validation of this hypothesis is still in sparse.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Biological Sciences, Clemson University, Clemson, SC, USA. Electronic address:
3,3',5.5'-Tetrabromobisphenol A (TBBPA) is a widely used brominated flame-retardant. The objective of this study is to use zebrafish as a model and determine the effects of TBBPA exposure on early embryogenesis.
View Article and Find Full Text PDFPhys Rev E
August 2024
Department of Physics of Complex Systems, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India.
We study the Oslo model, a paradigm for absorbing-phase transition, on a one-dimensional ring of L sites with a fixed global density ρ[over ¯]; we consider the system strictly above critical density ρ_{c}. Notably, microscopic dynamics conserve both mass and center of mass (CoM), but lack time-reversal symmetry. We show that, despite having highly constrained dynamics due to CoM conservation, the system exhibits diffusive relaxation away from criticality and superdiffusive relaxation near criticality.
View Article and Find Full Text PDF