514 results match your criteria: "Rudolf Peierls Centre for Theoretical Physics[Affiliation]"
Phys Rev E
November 2024
Ecole Nationale Supérieure de Génie Mathématique et Modélisation (ENSGMM), Université Nationale des Sciences, Technologies, Ingénierie et Mathématiques, Abomey, Republique du Bénin.
On applying a small bias force, nonequilibrium systems may respond in paradoxical ways such as with giant negative mobility (GNM)-a large net drift opposite to the applied bias, or giant positive mobility (GPM)-an anomalously large drift in the same direction as the applied bias. Such behaviors have been extensively studied in idealized models of externally driven passive inertial particles. Here, we consider a minimal model of a memory-driven active particle inspired from experiments with walking and superwalking droplets, whose equation of motion maps to the celebrated Lorenz system.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Department of Living Matter Physics, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany.
Phenomenological rules that govern the collective behavior of complex physical systems are powerful tools because they can make concrete predictions about their universality class based on generic considerations, such as symmetries, conservation laws, and dimensionality. While in most cases such considerations are manifestly ingrained in the constituents, novel phenomenology can emerge when composite units associated with emergent symmetries dominate the behavior of the system. We study a generic class of active matter systems with nonreciprocal interactions and demonstrate the existence of true long-range polar order in two dimensions and above, both at the linear level and by including all relevant nonlinearities in the Renormalization Group sense.
View Article and Find Full Text PDFEur Phys J Spec Top
August 2024
The Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU UK.
These notes provide an introduction to phase ordering in dry, scalar active matter. We first briefly review Model A and Model B, the long-standing continuum descriptions of ordering in systems with a non-conserved and conserved scalar order parameter. We then contrast different ways in which the field theories can be extended so that the phase ordering persists, but in systems that are active and do not reach thermodynamic equilibrium.
View Article and Find Full Text PDFbioRxiv
October 2024
Departments of Physics.
Many animals learn cognitive maps of their environment - a simultaneous representation of context, experience, and position. Place cells in the hippocampus, named for their explicit encoding of position, are believed to be a neural substrate of these maps, with place cell "remapping" explaining how this system can represent different contexts. Briefly, place cells alter their firing properties, or "remap", in response to changes in experiential or sensory cues.
View Article and Find Full Text PDFNat Commun
November 2024
TCM Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, UK.
Dissipation is a ubiquitous phenomenon that affects the fate of chaotic quantum many-body dynamics. Here, we show that chaos can be robust against dissipation but can also assist and anomalously enhance relaxation. We compute exactly the dissipative form factor of a generic Floquet quantum circuit with arbitrary on-site dissipation modeled by quantum channels and find that, for long enough times, the system always relaxes with two distinctive regimes characterized by the presence or absence of gap-closing.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Department of Physics, University of Maryland, College Park, Maryland 20742, USA.
Nonrelativistic axions can be efficiently produced in the polar caps of pulsars, resulting in the formation of a dense cloud of gravitationally bound axions. Here, we investigate the interplay between such an axion cloud and the electrodynamics in the pulsar magnetosphere, focusing specifically on the dynamics in the polar caps, where the impact of the axion cloud is expected to be most pronounced. For sufficiently light axions m_{a}≲10^{-7} eV, we show that the axion cloud can occasionally screen the local electric field responsible for particle acceleration and pair production, inducing a periodic nulling of the pulsar's intrinsic radio emission.
View Article and Find Full Text PDFPhys Rev Lett
October 2024
Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia.
The mechanics of epithelial tissues, which is governed by forces generated in various cell regions, is often investigated using two-dimensional models that account for the apically positioned actomyosin structures but neglect basolateral mechanics. We employ a more detailed three-dimensional model to study how lateral surface tensions affect the structure and rigidity of such tissues. We find that cells are apicobasally asymmetric, with one side appearing more ordered than the other depending on target cell apical perimeter.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2024
Massachusetts Institute of Technology Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139.
Motility coupled to responsive behavior is essential for many microorganisms to seek and establish appropriate habitats. One of the simplest possible responses, reversing the direction of motion, is believed to enable filamentous cyanobacteria to form stable aggregates or accumulate in suitable light conditions. Here, we demonstrate that filamentous morphology in combination with responding to light gradients by reversals has consequences far beyond simple accumulation: Entangled aggregates form at the boundaries of illuminated regions, harnessing the boundary to establish local order.
View Article and Find Full Text PDFPhys Rev E
September 2024
School of Computer and Mathematical Sciences, University of Adelaide, South Australia 5005, Australia.
We investigate the dynamics of a pointlike active particle suspended in fluid flow through a straight channel. For this particle-fluid system, we derive a constant of motion for a general unidirectional fluid flow and apply it to an approximation of Poiseuille flow through channels with rectangular cross- sections. We obtain a 4D nonlinear conservative dynamical system with one constant of motion and a dimensionless parameter describing the ratio of maximum flow speed to intrinsic active particle speed.
View Article and Find Full Text PDFPhys Rev E
August 2024
Section for Plasma Physics and Fusion Energy, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
The Wentzel, Kramers, and Brillouin (WKB) approximation of geometrical optics is widely used in plasma physics, quantum mechanics, and reduced wave modeling, in general. However, it is well-known that the approximation breaks down at focal and turning points. In this paper, we present an unsupervised numerical implementation of the recently developed metaplectic geometrical optics framework, which extends the applicability of geometrical optics beyond the limitations of WKB, such that the wave field remains finite at caustics.
View Article and Find Full Text PDFPhys Rev E
August 2024
Rudolf Peierls Centre for Theoretical Physics, Parks Road, University of Oxford, Oxford OX1 3PU, United Kingdom.
We use a continuum, two-fluid approach to study a mixture of two active nematic fluids. Even in the absence of thermodynamically driven ordering, for mixtures of different activities we observe turbulent microphase separation, where domains form and disintegrate chaotically in an active turbulent background. This is a weak effect if there is no elastic nematic alignment between the two fluid components, but is greatly enhanced in the presence of an elastic alignment or substrate friction.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
TCM Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
In systems with a real Bloch Hamiltonian band nodes can be characterized by a non-Abelian frame-rotation charge. The ability of these band nodes to annihilate pairwise is path dependent, since by braiding nodes in adjacent gaps the sign of their charges can be changed. Here, we theoretically construct and numerically confirm two concrete methods to experimentally probe these non-Abelian braiding processes and charges in ultracold atomic systems.
View Article and Find Full Text PDFSoft Matter
September 2024
Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
Director field alignment in inkjet printed droplets of chiral nematic liquid crystalline materials is investigated using both experiments and numerical simulations. Experimental investigations are performed by depositing droplets of varying sizes and pitches on homeotropic alignment layers. The competition between the bulk behaviour of the chiral nematic liquid crystal and the boundary conditions imposed by the droplet surface leads to the formation of a range of possible internal director configurations.
View Article and Find Full Text PDFNat Commun
September 2024
Aix Marseille Univ, CNRS, Centrale Med, M2P2, Marseille, France.
Providing stable and clean energy sources is a necessity for the increasing demands of humanity. Energy produced by Deuterium (D) and Tritium (T) fusion reactions, in particular in tokamaks, is a promising path towards that goal. However, there is little experience with plasmas formed by D-T mixtures, since most of the experiments are currently performed in pure D.
View Article and Find Full Text PDFJ Chem Phys
September 2024
Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, Paris, France.
In past decades, enormous effort has been expended to develop algorithms and even to construct special-purpose computers in order to efficiently evaluate total energies and forces for long-range-interacting particle systems, with the particle-mesh Ewald and the fast multipole methods as well as the "Anton" series of supercomputers serving as examples for biomolecular simulations. Cutoffs in the range of the interaction have also been used for large systems. All these methods require extrapolations.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Max Planck Institute for Dynamics and Self-Organization (MPI-DS), D-37077 Göttingen, Germany.
We study the defect solutions of the nonreciprocal Cahn-Hilliard model. We find two kinds of defects, spirals with unit magnitude topological charge, and topologically neutral targets. These defects generate radially outward traveling waves and thus break the parity and time-reversal symmetry.
View Article and Find Full Text PDFPhys Rev Lett
August 2024
Max Planck Institute for Dynamics and Self-Organization (MPI-DS), D-37077 Göttingen, Germany.
Chemically active colloids or enzymes cluster into dense droplets driven by their phoretic response to collectively generated chemical gradients. Employing Brownian dynamics simulation techniques, our study of the dynamics of such a chemically active droplet uncovers a rich variety of structures and dynamical properties, including the full range of fluidlike to solidlike behavior, and non-Gaussian positional fluctuations. Our work sheds light on the complex dynamics of the active constituents of metabolic clusters, which are the main drivers of nonequilibrium activity in living systems.
View Article and Find Full Text PDFJ Chem Phys
August 2024
Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.
Magnetic gels with embedded micro-/nano-sized magnetic particles in cross-linked polymer networks can be actuated by external magnetic fields, with changes in their internal microscopic structures and macroscopic mechanical properties. We investigate the responses of such magnetic gels to an external magnetic field, by means of coarse-grained molecular dynamics simulations. We find that the dynamics of magnetic particles are determined by the interplay of magnetic dipole-dipole interactions, polymer elasticity, and thermal fluctuations.
View Article and Find Full Text PDFAdv Sci (Weinh)
October 2024
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
Turbulent flows are observed in low-Reynolds active fluids, which display similar phenomenology to the classical inertial turbulence but are of a different nature. Understanding the dependence of this new type of turbulence on dimensionality is a fundamental challenge in non-equilibrium physics. Real-space structures and kinetic energy spectra of bacterial turbulence are experimentally measured from two to three dimensions.
View Article and Find Full Text PDFJ R Soc Interface
August 2024
CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences , Beijing 100190, People's Republic of China.
Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng . (Meng .
View Article and Find Full Text PDFPhys Rev Lett
July 2024
Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany.
Kinetic traps are a notorious problem in equilibrium statistical mechanics, where temperature quenches ultimately fail to bring the system to low energy configurations. Using multifarious self-assembly as a model system, we introduce a mechanism to escape kinetic traps by utilizing nonreciprocal interactions between components. Introducing nonequilibrium effects offered by broken action-reaction symmetry in the system pushes the trajectory of the system out of arrested dynamics.
View Article and Find Full Text PDFPhys Rev E
June 2024
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.
We consider a nearly collisionless plasma consisting of a species of "test particles" in one spatial and one velocity dimension, stirred by an externally imposed stochastic electric field-a kinetic analog of the Kraichnan model of passive advection. The mean effect on the particle distribution function is turbulent diffusion in velocity space-known as stochastic heating. Accompanying this heating is the generation of fine-scale structure in the distribution function, which we characterize with the collisionless (Casimir) invariant C_{2}∝∫∫dxdv〈f^{2}〉-a quantity that here plays the role of (negative) entropy of the distribution function.
View Article and Find Full Text PDFSci Rep
July 2024
Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris-Cité, Paris, France.
In a world made of atoms, computer simulations of molecular systems such as proteins in water play an enormous role in science. Software packages for molecular simulation have been developed for decades. They all discretize Hamilton's equations of motion and treat long-range potentials through cutoffs or discretization of reciprocal space.
View Article and Find Full Text PDFPhys Rev Lett
June 2024
All Souls College, Oxford OX1 4AL, United Kingdom.
We introduce and study a novel class of classical integrable many-body systems obtained by generalized TT[over ¯] deformations of free particles. Deformation terms are bilinears in densities and currents for the continuum of charges counting asymptotic particles of different momenta. In these models, which we dub "semiclassical Bethe systems" for their link with the dynamics of Bethe ansatz wave packets, many-body scattering processes are factorized, and two-body scattering shifts can be set to an almost arbitrary function of momenta.
View Article and Find Full Text PDF