1,441 results match your criteria: "Royan Institute for Stem Cell Biology and Technology[Affiliation]"

Traumatic brain Injury: Comprehensive overview from pathophysiology to Mesenchymal stem Cell-Based therapies.

Int Immunopharmacol

December 2024

Trauma Research Center, Shahid Rajaee (Emtiaz) Trauma Hospital, Shiraz University of Medical Sciences, Shiraz, Iran. Electronic address:

Traumatic brain injury (TBI) is a disastrous phenomenon which is considered to cause high mortality and morbidity rate. Regarding the importance of TBI due to its prevalence and its effects on the brain and other organs, finding new therapeutic methods and improvement of conventional therapies seems to be vital. TBI involves a complex physiological mechanism, with inflammation being a key component among various contributing factors.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is the most common form of diabetic neuropathy, representing 75% of cases and posing a substantial public health challenge. Emerging evidence from animal studies indicates that stem cell therapy holds significant promise as a potential treatment for diabetic neuropathy. Nevertheless, a comprehensive evaluation of the safety and efficacy of stem cell therapy for DPN in animal studies remains outstanding.

View Article and Find Full Text PDF

The cell replacement therapeutic potential of human pluripotent stem cells.

Expert Opin Biol Ther

December 2024

Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.

Introduction: The remarkable ability of human pluripotent stem cells (hPSCs) to differentiate into specialized cells of the human body emphasizes their immense potential in treating various diseases. Advances in hPSC technology are paving the way for personalized and allogeneic cell-based therapies. The first-in-human studies showed improved treatment of diseases with no adverse effects, which encouraged the industrial production of this type of medicine.

View Article and Find Full Text PDF

Background: Poly (β-amino Ester) nanocarriers show promise for gene therapy, but their effectiveness can be limited by the environment within the body. This study aims to understand how common cell culture media components affect optimized PBAE nanocarrier performance in gene delivery.

Methods: Optimized PBAE was synthesized based on Michael addition reaction and characterized by different assays, this study employed techniques like DLS and TEM to characterize PBAE nanocarriers, followed by cellular uptake analysis (flow cytometry and confocal imaging) and evaluation of gene expression under different polymer/DNA ratio ratios and media conditions.

View Article and Find Full Text PDF

Context: Telomeres maintain chromosome stability and mark cellular aging, and their shortening with age compromises genomic stability.

Objective: The purpose of this study was to conduct a meta-analysis of existing evidence to evaluate the relationship between the maternal pregnancy body mass index (BMI) and children's telomere length (TL).

Data Source: Web of Science, Scopus, and PubMed databases were systematically searched from their inception to August 27, 2023, for pertinent observational studies.

View Article and Find Full Text PDF

Developing a multi-epitope vaccine against Helicobacter Pylori.

Hum Immunol

December 2024

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Sciences and Advanced Technology in Biology, University of Science and Culture, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, and Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden. Electronic address:

Helicobacter pylori, a significant factor in the development of gastric cancer and peptic ulcers, poses challenges for drug development due to its resilience. Computational approaches offer potential solutions for effective vaccine development targeting its antigens while ensuring stability and safety. The four critical antigenic proteins included in this study's innovative vaccine design are neuraminyllactose-binding hemagglutinin (HpaA), catalase (KatA), urease (UreB), and vacuolating toxin (VacA).

View Article and Find Full Text PDF

Efficacy of 3D-printed chitosan‑cerium oxide dressings coated with vancomycin-loaded alginate for chronic wounds management.

Carbohydr Polym

February 2025

Marquette University School of Dentistry, Milwaukee, WI 53233, USA; Institute for Engineering in Medicine, Health, & Human Performance (EnMed), Batten College of Engineering and Technology, Old Dominion University, Norfolk, VA 23529, USA.

Multifunctional wound dressings with antibacterial and antioxidant properties hold significant promise for treating chronic wounds; however, achieving a balance of these characteristics while maintaining biocompatibility is challenging. To enhance this balance, this study focuses on the design and development of 3D-printed chitosan-matrix composite scaffolds, which are incorporated with varying amounts of cerium oxide nanoparticles (0, 1, 3, 5, and 7 wt%) and subsequently coated with a vancomycin-loaded alginate layer. The structure, antibiotic drug delivery kinetics, biodegradation, swelling, biocompatibility, antibacterial, antioxidant, and cell migration behaviors of the fabricated dressings were evaluated in-vitro.

View Article and Find Full Text PDF

Objectives: The COVID-19 pandemic has challenged global health systems since December 2019, with the novel virus SARS-CoV-2 causing multi-systemic disease, including heart complications. While acute cardiac effects are well-known, long-term implications are understudied. This review hopes to fill a gap in the literature and provide valuable insights into the long-term cardiac consequences of the virus, which can inform future public health policies and clinical practices.

View Article and Find Full Text PDF

Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis.

View Article and Find Full Text PDF

Progress in Biomaterials-Enhanced Vascularization by Modulating Physical Properties.

ACS Biomater Sci Eng

November 2024

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China.

Article Synopsis
  • Sufficient blood flow and a good vascular system are essential for delivering nutrients and oxygen in biomaterials used for medical purposes.
  • Exploring the best physical properties of these biomaterials, like pore structure and stiffness, can enhance their ability to develop blood vessels, improving their effectiveness in tissue engineering.
  • Understanding these properties can help create better research models and personalized treatments for issues like bone regeneration, wound healing, islet transplantation, and heart repair.
View Article and Find Full Text PDF

Modulation of the ubiquitin-proteasome system by curcumin: Therapeutic implications in cancer.

Pathol Res Pract

January 2025

Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

By the ubiquitin-proteasomes, cellular proteins are structurally degraded and turnover. Many essential functions and regulations of cells are regulated and controlled by these proteins. Recent studies indicated that many cancer types have been associated with aberrations in the ubiquitination pathway, which involves three enzymatic steps.

View Article and Find Full Text PDF

The avian influenza A (H7N9) virus, which circulates in wild birds and poultry, has been a major concern for public health since it was first discovered in China in 2013 due to its demonstrated ability to infect humans, causing severe respiratory illness with high mortality rates. According to the World Health Organization (WHO), a total of 1568 human infections with 616 fatal cases caused by novel H7N9 viruses have been reported in China from early 2013 to January 2024. This manuscript provides a comprehensive review of the virology, evolutionary patterns, and pandemic potential of H7N9.

View Article and Find Full Text PDF
Article Synopsis
  • * Diabetic rats received HAM scaffolds with and without curcumin for 21 days, with evaluations showing significant improvements in wound healing parameters like closure rates, cellular regeneration, and collagen deposition in both treated groups.
  • * The results indicated that the combined treatment (HAMS/β/C group) outperformed the HAM-only treatment in nearly all healing metrics, while also reducing inflammation, showcasing a potentially effective method for diabetic wound management.
View Article and Find Full Text PDF

Generation of iPSC-derived human venous endothelial cells for the modeling of vascular malformations and drug discovery.

Cell Stem Cell

November 2024

Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Clinical Stem Cell Research Center, Peking University Third Hospital, Peking University, Beijing 100191, China. Electronic address:

Article Synopsis
View Article and Find Full Text PDF
Article Synopsis
  • - A study was conducted to evaluate the effectiveness and safety of stem cell therapy for diabetic peripheral neuropathy (DPN) through a detailed literature review of clinical trials, which included seven relevant studies.
  • - Stem cell treatments primarily involved bone marrow and umbilical cord-derived cells, leading to significant improvements in nerve conduction speeds and reductions in various clinical scoring metrics, along with minor side effects like pain and swelling at injection sites.
  • - The findings indicate that stem cell therapy holds promise for enhancing DPN treatment outcomes, but further research is needed to refine therapy methods and verify results.
View Article and Find Full Text PDF

Introduction: In vivo neural recordings from primates require the installation of implants on the skull of the animal. Despite some improvements, current routines risk predisposition to infection and failure or impose constant discomfort by placing heaviness on the top of the head.

Methods: A custom-designed imaging adapter was obtained by magnetic resonance and computerized tomography (CT) imaging of the head region.

View Article and Find Full Text PDF

Degree of sulfation of freeze-dried calcium alginate sulfate scaffolds dramatically influence healing rate of full-thickness diabetic wounds.

Int J Biol Macromol

December 2024

Department of Cell Engineering, Stem Cells and Developmental Biology, Cell Science Research Center, ACECR, Royan Institute, Tehran, Iran. Electronic address:

Diabetic foot ulcer (DFU) is a chronic and non-healing wound in all age categories with a high prevalence and mortality in the world. An ideal wound dressing for DFU should possess the ability of adsorbing high contents of exudate and actively promote wound healing. Here, we introduced the calcium alginate sulfate as a new biomaterial appropriate for use in wound dressing to promote the healing of full-thickness ulcers in a diabetic mouse model.

View Article and Find Full Text PDF

Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening.

Arch Toxicol

November 2024

Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany.

Article Synopsis
  • Drug toxicity, particularly from non-steroidal anti-inflammatory drugs like diclofenac, contributes to chronic liver damage and disrupts bone health by affecting the liver-bone axis.
  • Researchers developed a reliable in vitro liver-bone co-culture model to study the effects of diclofenac on bone and liver interactions, finding optimal culture conditions for both systems.
  • The study revealed that chronic exposure to diclofenac enhances osteoclast-like cell activity in the co-culture, leading to reduced mineral content and stiffness in bone scaffolds, driven by oxidative stress and inflammation rather than diclofenac’s main metabolic products.
View Article and Find Full Text PDF

Design of a microneedle-based enzyme biosensor using a simple and cost-effective electrochemical strategy to monitor superoxide anion released from cancer cells.

Anal Biochem

February 2025

Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Babol, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.

Early detection of Reactive oxygen species (ROS) concentration is very important in cancer diagnosis, pathological examinations, and health screening. Studies show that changes in ROS concentration occurs in a short time, causing irreparable damage to living cells and organs. Miniaturized sensors and microelectrodes are capable of online monitoring of electrochemical reactions both in vitro and in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigated the protective effects of diosgenin against testicular injury caused by methotrexate (MTX) in rats, evaluating the outcomes after MTX treatment followed by diosgenin administration.
  • The results indicated that MTX exposure led to increased oxidative stress and inflammation, resulting in lowered testosterone levels and noticeable testicular damage in the rats.
  • However, diosgenin treatment significantly reduced oxidative stress and inflammation markers, which suggests that it could help protect testicular tissue from the harmful effects of MTX.
View Article and Find Full Text PDF

The aim of this study was to investigate the effects of omega-3 fatty acids on blood biochemical parameters, histological changes in pulmonary artery, cardiomyocytes, and liver, as well as the expression of ACACA, PFK1, and ET-1 genes in broiler chickens under environmental stress (high stoking density). A total of 420 one-day-old male Ross broilers were used in a 2 × 2 factorial arrangements, with 2 levels of environmental stress (without and with stress; 9 and 17 birds/m, respectively) and 2 levels of omega-3 fatty acids (low and high; 0.057 and 0.

View Article and Find Full Text PDF

Deep skin wounds require grafting with a skin substitute for treatment. Despite many attempts in the development of an affordable and efficient skin substitute, the repair of deep skin wounds still remains challenging. In the current study, we present a 3D sponge composite made from human placenta (a disposable organ) and sodium alginate with exceptional properties for skin tissue engineering applications.

View Article and Find Full Text PDF

AI-Based solutions for current challenges in regenerative medicine.

Eur J Pharmacol

December 2024

Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. Electronic address:

The emergence of Artificial Intelligence (AI) and its usage in regenerative medicine represents a significant opportunity that holds the promise of tackling critical challenges and improving therapeutic outcomes. This article examines the ways in which AI, including machine learning and data fusion techniques, can contribute to regenerative medicine, particularly in gene therapy, stem cell therapy, and tissue engineering. In gene therapy, AI tools can boost the accuracy and safety of treatments by analyzing extensive genomic datasets to target and modify genetic material in a precise manner.

View Article and Find Full Text PDF

Background: Wound healing represents a complex biological process, critically important in clinical practice due to its direct implication in a patient's recovery and quality of life. Conservative wound management frequently falls short in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, and the ability to cure wound environment.

View Article and Find Full Text PDF