397 results match your criteria: "Roche Innovation Center Munich[Affiliation]"

In eukaryotes, the Dph1•Dph2 dimer is a non-canonical radical SAM enzyme. Using iron-sulfur (FeS) clusters, it cleaves the cosubstrate S-adenosyl-methionine (SAM) to form a 3-amino-3-carboxy-propyl (ACP) radical for the synthesis of diphthamide. The latter decorates a histidine residue on elongation factor 2 (EF2) conserved from archaea to yeast and humans and is important for accurate mRNA translation and protein synthesis.

View Article and Find Full Text PDF

External controls (eControls) leverage historical data to create non-randomized control arms. The lack of randomization can result in confounding between the experimental and eControl cohorts. To balance potentially confounding variables between the cohorts, one of the proposed methods is to match on prognostic scores.

View Article and Find Full Text PDF

Antibodies are key proteins of the adaptive immune system, and there exists a large body of academic literature and patents dedicated to their study and concomitant conversion into therapeutics, diagnostics, or reagents. These documents often contain extensive functional characterisations of the sets of antibodies they describe. However, leveraging these heterogeneous reports, for example to offer insights into the properties of query antibodies of interest, is currently challenging as there is no central repository through which this wide corpus can be mined by sequence or structure.

View Article and Find Full Text PDF

PEP-Patch: Electrostatics in Protein-Protein Recognition, Specificity, and Antibody Developability.

J Chem Inf Model

November 2023

Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria.

The electrostatic properties of proteins arise from the number and distribution of polar and charged residues. Electrostatic interactions in proteins play a critical role in numerous processes such as molecular recognition, protein solubility, viscosity, and antibody developability. Thus, characterizing and quantifying electrostatic properties of a protein are prerequisites for understanding these processes.

View Article and Find Full Text PDF

Purpose: Overall survival (OS) is the primary end point in phase III oncology trials. Given low success rates, surrogate end points, such as progression-free survival or objective response rate, are used in early go/no-go decision making. Here, we investigate whether early trends of OS prognostic biomarkers, such as the ROPRO and DeepROPRO, can also be used for this purpose.

View Article and Find Full Text PDF

Diligent Design Enables Antibody-ASO Conjugates with Optimal Pharmacokinetic Properties.

Bioconjug Chem

November 2023

Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland.

Antisense-oligonucleotides (ASOs) are a promising drug modality for the treatment of neurological disorders, but the currently established route of administration intrathecal delivery is a major limitation to its broader clinical application. An attractive alternative is the conjugation of the ASO to an antibody that facilitates access to the central nervous system (CNS) after peripheral application and target engagement at the blood-brain barrier, followed by transcytosis. Here, we show that the diligent conjugate design of Brainshuttle-ASO conjugates is the key to generating promising delivery vehicles and thereby establishing design principles to create optimized molecules with drug-like properties.

View Article and Find Full Text PDF

Internal Fragment Ions from Higher Energy Collision Dissociation Enable the Glycoform-Resolved Asn325 Deamidation Assessment of Antibodies by Middle-Down Mass Spectrometry.

Anal Chem

November 2023

Protein Analytical Chemistry, Genentech, A Member of the Roche Group, 1 DNA Way, South San Francisco, California 94080, United States.

A major challenge in proteoform characterization is to obtain information on coexisting post-translational modifications (PTMs), which is lost in traditional bottom-up analysis. Middle-down approaches of antibodies provide a good balance of resolution, site-specificity, and proteoform heterogeneity to characterize individual proteoforms at subunit level. Currently, most middle-down studies focus on terminal fragment ions, which may not cover or resolve PTMs in the center of the sequence or with minor mass shifts such as deamidation, often a critical quality attribute for antibody drugs.

View Article and Find Full Text PDF

Hepatocellular Carcinoma: Up-regulated Circular RNAs Which Mediate Efficacy in Preclinical Models.

Cancer Genomics Proteomics

November 2023

Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany

Hepatocellular carcinoma (HCC) ranges as number two with respect to the incidence of tumors and is associated with a dismal prognosis. The therapeutic efficacy of approved multi-tyrosine kinase inhibitors and checkpoint inhibitors is modest. Therefore, the identification of new therapeutic targets and entities is of paramount importance.

View Article and Find Full Text PDF

Introduction: The concept of Digital Twins (DTs) translated to drug development and clinical trials describes virtual representations of systems of various complexities, ranging from individual cells to entire humans, and enables in silico simulations and experiments. DTs increase the efficiency of drug discovery and development by digitalizing processes associated with high economic, ethical, or social burden. The impact is multifaceted: DT models sharpen disease understanding, support biomarker discovery and accelerate drug development, thus advancing precision medicine.

View Article and Find Full Text PDF

Recent progress in computational pathology has been driven by deep learning. While code and data availability are essential to reproduce findings from preceding publications, ensuring a deep learning model's reusability is more challenging. For that, the codebase should be well-documented and easy to integrate into existing workflows and models should be robust toward noise and generalizable toward data from different sources.

View Article and Find Full Text PDF

There are few treatments that slow neurodegeneration in Alzheimer's disease (AD), and while therapeutic antibodies are being investigated in clinical trials for AD treatment, their access to the central nervous system is restricted by the blood-brain barrier. This study investigates a bispecific modular fusion protein composed of gantenerumab, a fully human monoclonal anti- amyloid-beta (Aβ) antibody under investigation for AD treatment, with a human transferrin receptor 1-directed Brainshuttle™ module (trontinemab; RG6102, INN trontinemab). , trontinemab showed a similar binding affinity to fibrillar Aβ and Aβ plaques in human AD brain sections to gantenerumab.

View Article and Find Full Text PDF

Human Fc gamma receptor IIa (FcγRIIa) or CD32a has two major allotypes with a single amino acid difference at position 131 (histidine or arginine). Differences in FcγRIIa allotypes are known to impact immunological responses such as the clinical outcome of therapeutic monoclonal antibodies (mAbs). FcγRIIa is involved in antibody-dependent cellular phagocytosis (ADCP), which is an important contributor to the mechanism-of-action of mAbs by driving phagocytic clearance of cancer cells.

View Article and Find Full Text PDF

The function of an antibody is intrinsically linked to the epitope it engages. Clonal clustering methods, based on sequence identity, are commonly used to group antibodies that will bind to the same epitope. However, such methods neglect the fact that antibodies with highly diverse sequences can exhibit similar binding site geometries and engage common epitopes.

View Article and Find Full Text PDF

Protein glycosylation is one of the most common PTMs and many cell surface receptors, extracellular proteins, and biopharmaceuticals are glycosylated. However, HDX-MS analysis of such important glycoproteins has so far been limited by difficulties in determining the HDX of the protein segments that contain glycans. We have developed a column containing immobilized PNGase Rc (from ) that can readily be implemented into a conventional HDX-MS setup to allow improved analysis of glycoproteins.

View Article and Find Full Text PDF

The autosomal-recessive diphthamide deficiency syndrome presents as intellectual disability with developmental abnormalities, seizures, craniofacial and additional morphological phenotypes. It is caused by reduced activity of proteins that synthesize diphthamide on human translation elongation factor 2. Diphthamide synthesis requires seven proteins (DPH1-DPH7), with clinical deficiency described for DPH1, DPH2 and DPH5.

View Article and Find Full Text PDF

Antibody-cytokine fusions targeted against tumor-associated antigens (TAAs) are promising cancer immunotherapy agents, with many such molecules currently undergoing clinical trials. However, due to the limited number of tumor-specific targets, on-target off-tumor effects can lead to systemic toxicity. Additionally, targeted cytokines can be scavenged by cytokine receptors on peripheral cells, decreasing tumor penetration.

View Article and Find Full Text PDF

T cell bispecific antibodies (TCBs) are the focus of intense development for cancer immunotherapy. Recently, peptide-MHC (major histocompatibility complex)-targeted TCBs have emerged as a new class of biotherapeutics with improved specificity. These TCBs simultaneously bind to target peptides presented by the polymorphic, species-specific MHC encoded by the human leukocyte antigen (HLA) allele present on target cells and to the CD3 coreceptor expressed by human T lymphocytes.

View Article and Find Full Text PDF

Massive, parallelized 3D stem cell cultures for engineering human cell types require imaging methods with high time and spatial resolution to fully exploit technological advances in cell culture technologies. Here, we introduce a large-scale integrated microfluidic chip platform for automated 3D stem cell differentiation. To fully enable dynamic high-content imaging on the chip platform, we developed a label-free deep learning method called Bright2Nuc to predict nuclear staining in 3D from confocal microscopy bright-field images.

View Article and Find Full Text PDF

High ionic strength dissociation assay reduces dimeric target interference in immunogenicity testing.

Bioanalysis

July 2023

Roche Pharma Research & Early Development (pRED), Pharmaceutical Sciences, Bioanalysis & Biomarkers, Roche Innovation Center Munich, Roche Diagnostics GmbH, Nonnenwald 2, Penzberg, 82377, Germany.

The presence of di-/multi-meric forms of soluble target in biological samples can interfere in anti-drug antibody (ADA) assays, leading to increased background values and potentially false positivity. The authors investigated the use of the high ionic strength dissociation assay (HISDA) to reduce target interference in two different ADA assays. Interference caused by homodimeric FAP was successfully eliminated to enable cut point determination after applying HISDA.

View Article and Find Full Text PDF

The use of LC-MS(/MS) assays to quantify (biotherapeutic or biomarker) proteins is commonplace and well accepted across industry. There is a good understanding on the added value over conventional analytical technologies (i.e.

View Article and Find Full Text PDF

Immune receptor proteins play a key role in the immune system and have shown great promise as biotherapeutics. The structure of these proteins is critical for understanding their antigen binding properties. Here, we present ImmuneBuilder, a set of deep learning models trained to accurately predict the structure of antibodies (ABodyBuilder2), nanobodies (NanoBodyBuilder2) and T-Cell receptors (TCRBuilder2).

View Article and Find Full Text PDF

Introduction: Angiopoetin-2 (Ang-2) is a key mediator of tumour angiogenesis. When upregulated it is associated with tumour progression and poor prognosis. Anti-vascular endothelial growth factor (VEGF) therapy has been widely used in the treatment of metastatic colorectal cancer (mCRC).

View Article and Find Full Text PDF

Background: Acute Myeloid leukemia is a heterogeneous disease that requires novel targeted treatment options tailored to the patients' specific microenvironment and blast phenotype.

Methods: We characterized bone marrow and/or blood samples of 37 AML patients and healthy donors by high dimensional flow cytometry and RNA sequencing using computational analysis. In addition, we performed ex vivo ADCC assays using allogeneic NK cells isolated from healthy donors and AML patient material to test the cytotoxic potential of CD25 Mab (also referred to as RG6292 and RO7296682) or isotype control antibody on regulatory T cells and CD25+ AML cells.

View Article and Find Full Text PDF

This first-in-human study evaluated RO7122290, a bispecific fusion protein carrying a split trimeric 4-1BB (CD137) ligand and a fibroblast activation protein α (FAP) binding site that costimulates T cells for improved tumor cell killing in FAP-expressing tumors. Patients with advanced or metastatic solid tumors received escalating weekly intravenous doses of RO7122290 as a single agent ( = 65) or in combination with a 1200-milligram fixed dose of the anti-programmed death-ligand 1 (anti-PD-L1) antibody atezolizumab given every 3 weeks ( = 50), across a tested RO7122290 dose range of 5 to 2000 milligrams and 45 to 2000 milligrams, respectively. Three dose-limiting toxicities were reported, two at different RO7122290 single-agent doses (grade 3 febrile neutropenia and grade 3 cytokine release syndrome) and one for the combination (grade 3 pneumonitis).

View Article and Find Full Text PDF

Breast Cancer: Circular RNAs Mediating Efficacy in Preclinical Models.

Cancer Genomics Proteomics

April 2023

Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany

In order to identify new targets and treatment modalities for breast cancer, we searched the literature for circular RNAs (circRNAs) with efficacy in preclinical breast cancer-related in vivo models. From our search, we identified 26 up-regulated and six down-regulated circRNAs which mediate efficacy in breast cancer-related preclinical in vivo models. We discuss reconstitution and inhibition of the identified circRNAs, as well as druggability and validation of the targets identified in the context of chemoresistance, inhibition of proliferation and metastasis.

View Article and Find Full Text PDF