19 results match your criteria: "Research and Development Center of Technology for Industry[Affiliation]"

Oleogels are structured materials formed by immobilizing oil within a polymer network. This study aimed to synthesize bilayer foamed oleogels using Ecogel™ as an emulsifier-a natural gelling and emulsifying agent commonly used to stabilize emulsions. Ecogel™ is multifunctional, particularly in cosmetic formulations, where it aids in creating lightweight cream gels with a cooling effect.

View Article and Find Full Text PDF

Zinc oxide, due to its unique physicochemical properties, including dual piezoelectric and semiconductive ones, demonstrates a high application potential in various fields, with a particular focus on nanotechnology. Among ZnO nanoforms, nanorods are gaining particular interest. Due to their ability to efficiently transport charge carriers and photoelectric properties, they demonstrate significant potential in energy storage and conversion, as well as photovoltaics.

View Article and Find Full Text PDF

Oleogels are semi-solid materials that consist primarily of liquid oil immobilized in a network of organized structural molecules, which provide stability and maintain the oil in the desired shape. Due to their structure, oleogels can stabilize large amounts of liquid, making them excellent carriers for active substances, both lipophilic and hydrophilic. This study presents the synthesis methodology and investigations of olive oil-based oleogels, which are among the healthiest and most valuable vegetable fats, rich in unsaturated fatty acids and antioxidants such as vitamin E.

View Article and Find Full Text PDF

The ambient stability of copper oxide layers produced through thermal oxidation is a critical factor for their application in advanced photovoltaic devices. This study investigates the long-term stability of thermally grown sodium-doped copper oxides fabricated at 300 °C, 500 °C, and 700 °C. The structural, optical, and electronic properties of these oxide layers were examined after a 30-day period to understand how thermal oxidation temperature and sodium doping influence the durability and properties of copper oxide films.

View Article and Find Full Text PDF
Article Synopsis
  • The study involves creating zinc oxide (ZnO) thin films doped with germanium (Ge) using atomic layer deposition (ALD), which enhances their conductivity by increasing the carrier concentration.
  • Doped ZnO films display better optical properties, such as higher transmittance and lower reflectance, making them promising for opto-electronic uses; the doping causes a blue shift in the band gap due to the Burstein-Moss effect.
  • Surface analysis shows that Ge substitutes Zn in the wurtzite structure, and higher Ge concentrations lead to more oxygen vacancies, which negatively affect the electrical properties of the films.
View Article and Find Full Text PDF

In this study, a methodology for synthesizing oleogels based on linseed oil and emulsifiers, such as beeswax and Tween 20 and Tween 80, was developed. Linseed oil served as the main oil phase, while beeswax acted as a gelling and emulsifying agent. Tween compounds are non-ionic surfactants composed of hydrophobic and hydrophilic parts, allowing for the formation of a stable system with promising properties.

View Article and Find Full Text PDF

Nano-sized biomaterials are innovative drug carriers with nanometric dimensions. Designed with biocompatibility in mind, they enable precise drug delivery while minimizing side effects. Controlled release of therapeutic substances enhances efficacy, opening new possibilities for treating neurological and oncological diseases.

View Article and Find Full Text PDF

Formamidinium lead iodide (FAPbI)-based perovskite solar cells have gained immense popularity over the last few years within the perovskite research community due to their incredible opto-electronic properties and the record power conversion efficiencies (PCEs) achieved by the solar cells. However, FAPbI is vulnerable to phase transitions even at room temperature, which cause structural instability and eventual device failure during operation. We performed post-treatment of the FAPbI surface with octyl ammonium iodide (OAI) in order to stabilize the active phase and preserve the crystal structure of FAPbI.

View Article and Find Full Text PDF

Thin films of tin (II) sulfide (SnS) were deposited onto a 500 µm thick copper substrate by a chemical bath method. The effect of sodium (Na) doping in these films was studied. The synthesis of the films was performed at temperatures of 60, 70, and 80 °C for 5 min.

View Article and Find Full Text PDF

Recently, an unprecedented growth in the internet of things (IoT) is being observed, which is becoming the main driver for the entire semiconductor industry. Reliable maintenance and servicing of the IoT is becoming challenging, knowing that the IoT nodes outnumber the human population by a factor of seven. Energy harvesting (EH) can overcome those difficulties, delivering the energyautonomous IoT nodes to the market.

View Article and Find Full Text PDF

In this work we demonstrated the process of co-deposition of copper-tin sulfide species by the atomic layer deposition (ALD) technique using all-low-cost precursors. For the deposition of tin species, the tin(IV) chloride SnClwas used successfully for the first time in the ALD process. Moreover, we showed that the successful deposition of the tin sulfide component was conditioned by the pre-deposition of CuSlayer.

View Article and Find Full Text PDF

The lack of resistance of plastic objects to various pathogens and their increasing activity in our daily life have made researchers develop polymeric materials with biocidal properties. Hence, this paper describes the thermoplastic composites of Polyamide 12 mixed with 1-5 wt % of the nanoparticles of zinc, copper, and titanium oxides prepared by a twin-screw extrusion process and injection moulding. A satisfactory biocidal activity of polyamide 12 nanocomposites was obtained thanks to homogenously dispersed metal oxides in the polymer matrix and the wettability of the metal oxides by PA12.

View Article and Find Full Text PDF

The high efficiency of solid oxide fuel cells with LaSrMnO (LSM) cathodes working in the range of 800-1000 °C, rapidly decreases below 800 °C. The goal of this study is to improve the properties of LSM cathodes working in the range of 500-800 °C by the addition of YFeCoO (YFC). Monophasic YFC is synthesized and sintered at 950 °C.

View Article and Find Full Text PDF

In this work, the multiferroic bismuth ferrite materials BiREFeO doped by rare-earth (RE = La, Eu, and Er) elements were obtained by the solution combustion synthesis. Structure, electrical, and magnetic properties of prepared samples were investigated by X-ray photoelectron spectroscopy, Mössbauer spectroscopy, electrical hysteresis measurement, broadband dielectric spectroscopy, and SQUID magnetometry. All obtained nanomaterials are characterized by spontaneous electrical polarization, which confirmed their ferroelectric properties.

View Article and Find Full Text PDF

The common occurrence of the phenomenon of cavitation in many industries and the multitude of factors affecting the resistance to cavitation erosion of used materials contribute to the search for methods and appropriate parameters of coating application that are able to minimize the effects of erosion. To determine the validity of the developed application parameters and the method used, cavitation studies and microscopic observations of the development of erosion during the cavitation test were carried out. There was a clear lack of incubation time and a linear increase in losses after 60 min of the test.

View Article and Find Full Text PDF

Copper-based coatings are known for their high antibacterial activity. In this study, nanocomposite Cu-Sn-TiO coatings were obtained by electrodeposition from an oxalic acid bath additionally containing 4 g/dm TiO with mechanical and ultrasonic agitation. Ultrasound treatment was performed at 26 kHz frequency and 32 W/dm power.

View Article and Find Full Text PDF

In this work, we present the results of defects analysis concerning ZnO and AlO layers deposited by atomic layer deposition (ALD) technique. The analysis was performed by the X-band electron paramagnetic resonance (EPR) spectroscopy, transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) methods. The layers were either tested as-deposited or after 30 min heating at 300 °C and 450 °C in Ar atmosphere.

View Article and Find Full Text PDF

This paper presents results from the production of copper oxide layers on a Cu sheet substrate using diode and Yb:YAG disc lasers operating in the wavelength ranges of 808-940 nm and 1030 nm. The parameters of these layers were compared with the layer obtained in the thermal process of copper oxidation at 300 °C in an infrared (IR) furnace in a natural atmosphere. Investigations into the layers mentioned above, concerning their topography, chemical composition and roughness, were made using scanning electron microscopy (SEM) and atomic force microscopy (AFM).

View Article and Find Full Text PDF

In this work we present research results on a new paste NPCuXX (where: NP-new paste, CuXX-component, XX-a modifier consisting of Ni and other important elements) based on a copper composite (CuXX) for fabrication of front electrodes in silicon solar cells. The CuXX composite is obtained by chemical processing of copper powder particles and can be used in two ways: as an additive to commercially available paste or as a base material for a new paste, NPCuXX. The CuXX offers the possibility to exchange up to 30 and 50 wt.

View Article and Find Full Text PDF