482 results match your criteria: "Research Institute of the University of Bucharest[Affiliation]"

One of the well-known postoperative complications that requires a number of prophylactic and curative treatments is infection. The implications of postsurgical infections are further exacerbated by the emergence of antibiotic-resistant strains. Reduced effectiveness of synthetic antibiotics has led to an interest in plant-based substances.

View Article and Find Full Text PDF

Novel strategies based on natural products and synthetic derivatives to overcome resistance in Mycobacterium tuberculosis.

Eur J Med Chem

April 2024

Research Institute of the University of Bucharest, University of Bucharest, 90 Panduri Road, Bucharest, Romania; Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, Bucharest, R-050095, Romania. Electronic address:

One of the biggest health challenges of today's world is the emergence of antimicrobial resistance (AMR), which renders conventional therapeutics insufficient and urgently demands the generation of novel antimicrobial strategies. Mycobacterium tuberculosis (M. tuberculosis), the pathogen causing tuberculosis (TB), is among the most successful bacteria producing drug-resistant infections.

View Article and Find Full Text PDF

6-Iodo-substituted carboxy-quinolines were obtained using a one-pot, three-component method with trifluoroacetic acid as a catalyst under acidic conditions. Iodo-aniline, pyruvic acid and 22 phenyl-substituted aldehydes (we varied the type and number of radicals) or O-heterocycles, resulting in different electronic effects, were the starting components. This approach offers advantages such as rapid response times, cost-effective catalysts, high product yields and efficient purification procedures.

View Article and Find Full Text PDF

Enhancing the Antioxidant Potential of PP29 Probiotic Media through Incorporation of L. Anthocyanin Extract.

Antioxidants (Basel)

January 2024

Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania.

Lactic acid bacteria (LAB) produce important metabolites during fermentation processes, such as exopolysaccharides (EPS), which represent powerful natural antioxidants. On the other hand, L. anthocyanin extracts protect LAB and support their development.

View Article and Find Full Text PDF

To modulate the bioactivity and boost the therapeutic outcome of implantable metallic devices, biodegradable coatings based on polylactide (PLA) and graphene oxide nanosheets (nGOs) loaded with Zinforo™ (Zin) have been proposed in this study as innovative alternatives for the local management of biofilm-associated periprosthetic infections. Using a modified Hummers protocol, high-purity and ultra-thin nGOs have been obtained, as evidenced by X-ray diffraction (XRD) and transmission electron microscopy (TEM) investigations. The matrix-assisted pulsed laser evaporation (MAPLE) technique has been successfully employed to obtain the PLA-nGO-Zin coatings.

View Article and Find Full Text PDF

Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties.

View Article and Find Full Text PDF

Enterobacterales carrying chromosomal AmpC β-lactamases in Europe (EuESCPM): Epidemiology and antimicrobial resistance burden from a cohort of 27 hospitals, 2020-2022.

Int J Antimicrob Agents

May 2024

Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy; Department of Public Health and Paediatrics, University of Torino, Turin, Italy.

Introduction: The ESCPM group (Enterobacter species including Klebsiella aerogenes - formerly Enterobacter aerogenes, Serratia species, Citrobacter freundii complex, Providencia species and Morganella morganii) has not yet been incorporated into systematic surveillance programs.

Methods: We conducted a multicentre retrospective observational study analysing all ESCPM strains isolated from blood cultures in 27 European hospitals over a 3-year period (2020-2022). Diagnostic approach, epidemiology, and antimicrobial susceptibility were investigated.

View Article and Find Full Text PDF

Intrastent Restenosis: A Comprehensive Review.

Int J Mol Sci

January 2024

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania.

The primary objective of this paper is to delineate and elucidate the contemporary advancements, developments, and prevailing trajectories concerning intrastent restenosis (ISR). We aim to provide a thorough overview of the most recent developments in this area, covering various aspects such as pathophysiological insights, therapeutic approaches, and new strategies for tackling the complex challenges of ISR in modern clinical settings. The authors have undertaken a study to address a relatively new medical challenge, recognizing its significant impact on the morbidity and mortality of individuals with cardiovascular diseases.

View Article and Find Full Text PDF

Many countries worldwide had difficulties reaching a sufficiently high vaccination uptake during the COVID-19 pandemic. Given this context, we collected data from a panel of 30,000 individuals, which were representative of the population of Romania (a country in Eastern Europe with a low 42.6% vaccination rate) to determine whether people are more likely to be connected to peers displaying similar opinions about COVID-19 vaccination.

View Article and Find Full Text PDF

Synthetic Approaches to Novel Human Carbonic Anhydrase Isoform Inhibitors Based on Pyrrol-2-one Moiety.

J Med Chem

February 2024

NEUROFARBA Department, Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via U. Schiff 6, 50019 Sesto Fiorentino, Firenze Italy.

New dihydro-pyrrol-2-one compounds, featuring dual sulfonamide groups, were synthesized through a one-pot, three-component approach utilizing trifluoroacetic acid as a catalyst. Computational analysis using density functional theory (DFT) and condensed Fukui function explored the structure-reactivity relationship. Evaluation against human carbonic anhydrase isoforms (hCA I, II, IX, XII) revealed potent inhibition.

View Article and Find Full Text PDF

Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion.

View Article and Find Full Text PDF

Gastrointestinal cancers are characterized by a frequent incidence, a high number of associated deaths, and a tremendous burden on the medical system and patients worldwide. As conventional chemotherapeutic drugs face numerous limitations, researchers started to investigate better alternatives for extending drug efficacy and limiting adverse effects. A remarkably increasing interest has been addressed to chitosan and cyclodextrins, two highly versatile natural carbohydrate materials endowed with unique physicochemical properties.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) increasingly burden health systems and patients worldwide, necessitating the improved awareness of current treatment possibilities and the development of more efficient therapeutic strategies. When plaque deposits narrow the arteries, the standard of care implies the insertion of a stent at the lesion site. The most promising development in cardiovascular stents has been the release of medications from these stents.

View Article and Find Full Text PDF

Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology.

View Article and Find Full Text PDF

Pure Epigallocatechin-3-gallate-Assisted Green Synthesis of Highly Stable Titanium Dioxide Nanoparticles.

Materials (Basel)

January 2024

Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.

Nanoparticles (NPs) are conventionally produced by using physical and chemical methods that are no longer in alignment with current society's demand for a low environmental impact. Accordingly, green synthesis approaches are considered a potential alternative due to the plant extracts that substitute some of the hazardous reagents. The general mechanism is based on the reducing power of natural products that allows the formation of NPs from a precursor solution.

View Article and Find Full Text PDF

The imbalance of microbial composition and diversity in favor of pathogenic microorganisms combined with a loss of beneficial gut microbiota taxa results from factors such as age, diet, antimicrobial administration for different infections, other underlying medical conditions, etc. Probiotics are known for their capacity to improve health by stimulating the indigenous gut microbiota, enhancing host immunity resistance to infection, helping digestion, and carrying out various other functions. Concurrently, the metabolites produced by these microorganisms, termed postbiotics, which include compounds like bacteriocins, lactic acid, and hydrogen peroxide, contribute to inhibiting a wide range of pathogenic bacteria.

View Article and Find Full Text PDF

-Hydroxyapatite Nanocomposites with Antibacterial Properties.

Polymers (Basel)

November 2023

Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor Str., District 5, 060101 Bucharest, Romania.

In the present study, sage-coated zinc-doped hydroxyapatite was incorporated into a dextran matrix (7ZnHAp-SD), and its physico-chemical and antimicrobial activities were investigated. A 7ZnHAp-SD nanocomposite suspension was obtained using the co-precipitation method. The stability of the nanocomposite suspension was evaluated using ultrasound measurements.

View Article and Find Full Text PDF

Therapeutic Management of Malignant Wounds: An Update.

Curr Treat Options Oncol

January 2024

Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania.

Malignant fungating wounds (MFW) are severe skin conditions generating tremendous distress in oncological patients with advanced cancer stages because of pain, malodor, exudation, pruritus, inflammation, edema, and bleeding. The classical therapeutic approaches such as surgery, opioids, antimicrobials, and application of different wound dressings are failing in handling pain, odor, and infection control, thus urgently requiring the development of alternative strategies. The aim of this review was to provide an update on the current therapeutic strategies and the perspectives on developing novel alternatives for better malignant wound management.

View Article and Find Full Text PDF

The aim of this study involved the synthesis and characterization of polyurethane (PUR) foams obtained from poly(ethylene terephthalate) (PET) depolymerization products and two types of filling agents, namely fly ash and glass waste. The depolymerized PET-based products were obtained by zinc acetate-catalyzed glycolysis process in diethylene glycol (DEG) as a co-reactant. The resulting glycolysis products were contacted with methylene diphenyl diisocyanate, castor oil, and reinforcing agents.

View Article and Find Full Text PDF

Exploring silver-based and carbon-based nanomaterials' excellent intrinsic antipathogenic effects represents an attractive alternative for fabricating anti-infective formulations. Using chemical synthesis protocols, stearate-conjugated silver (Ag@C) nanoparticles and graphene oxide nanosheets (nGOs) were herein obtained and investigated in terms of composition and microstructure. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) characterizations revealed the formation of nanomaterials with desirable physical properties, while X-ray diffraction (XRD) analyses confirmed the high purity of synthesized nanomaterials.

View Article and Find Full Text PDF

The present study reported the obtention of xerogels based on chitosan and citral and their use as materials for mercury ion recovery from aqueous solutions, this being a serious problem related to the environment. The systems were prepared by the acid condensation of chitosan with citral, followed by the lyophilization of the resulting hydrogels, in order to obtain highly porous solid materials. The structural, morphological and supramolecular characterization of the systems was performed using H-NMR and FTIR spectroscopy, scanning electron microscopy and wide-angle X-ray diffraction.

View Article and Find Full Text PDF

Efficient identification of volatile organic compounds (VOCs) is essential for the rapid diagnostication of respiratory diseases. By detecting specific biomarkers associated with different pathologies one may distinguish between tuberculosis, nosocomial pneumonia, , influenza and SARS-CoV-2 virus infections. Phosphorene and MoS are potential candidates from the class of 2D graphene-like materials, which can be used as active layers for sensing elements.

View Article and Find Full Text PDF

Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations.

View Article and Find Full Text PDF

Evapotranspiration (ETo) is a complex and non-linear hydrological process with a significant impact on efficient water resource planning and long-term management. The Penman-Monteith (PM) equation method, developed by the Food and Agriculture Organization of the United Nations (FAO), represents an advancement over earlier approaches for estimating ETo. Eto though reliable, faces limitations due to the requirement for climatological data not always available at specific locations.

View Article and Find Full Text PDF