480 results match your criteria: "Research Institute of PetroChina Exploration & Development[Affiliation]"

In the context of carbon neutrality, the oil and gas industry is facing increasingly stringent environmental regulatory pressures, posing severe challenges to enterprise sustainability development. This study proposes a new comprehensive calculation model to investigate the effects of low-carbon transformation and development of petrochemical enterprises in recent years. It can effectively quantify the relative efficiency of different samples in the same time interval and the efficiency change of a single sample in the time series.

View Article and Find Full Text PDF

The reservoir in focus has braided river delta front deposition, with multiple periods of submerged distributary channels within the reservoir. It also displays frequent cutting and stacking with local-connecting characteristics. Forecasting the sand distribution characteristics between wells in this type of reservoir brings a significant challenge for modeling.

View Article and Find Full Text PDF

The clastic rocks of the Yanchang Formation in the Ordos Basin display poor physical properties but are rich in petroleum resources, exhibiting significant exploration potential. However, due to the existence of multiple sets of oil-bearing formations, hydrocarbon-generating formations, and a large longitudinal span, elucidating the correspondence between crude oil and source rocks is vital for further exploration. This study concentrates on the Lower Yanchang Formation of Triassic in the Yan'an area of the Ordos Basin, aiming to perform refined oil-source correlation.

View Article and Find Full Text PDF

Enhanced Prediction of CO-Brine Interfacial Tension at Varying Temperature Using a Multibranch-Structure-Based Neural Network Approach.

Langmuir

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116023, P. R. China.

Interfacial tension () between CO and brine depends on chemical components in multiphase systems, intricately evolving with a change in temperature. In this study, we developed a convolutional neural network with a multibranch structure (MBCNN), which, in combination with a compiled data set containing measurement data of 1716 samples from 13 available literature sources at wide temperature and pressure ranges (273.15-473.

View Article and Find Full Text PDF

The mechanical properties of multi-lithologic reservoir rock masses are complex, and the failure mechanism is not clear. This research belongs to the field of oil and gas exploration and development. Brazilian splitting, and digital image correlation (DIC) tests were performed to study the mechanical properties and failure mechanism of assemblages containing sandstone, shale, and limestone.

View Article and Find Full Text PDF

Study on pH-Responsive Delayed, Cross-Linking and Weighted Fracturing Fluid.

Molecules

December 2024

National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, China.

Hydraulic fracturing of deep, high-temperature reservoirs poses challenges due to elevated temperatures and high fracture pressures. Conventional polymer fracturing fluid (QCL) has high viscosity upon adding cross-linking agents and significantly increases wellbore friction. This paper examines a polymer fracturing fluid with pH response and low friction.

View Article and Find Full Text PDF
Article Synopsis
  • The pore structure of shale significantly influences shale gas occurrence and flow, and fractal dimensions can quantitatively describe this complexity.
  • The study focused on the Leping Formation shale in the southern Sichuan Basin, utilizing techniques like low-pressure CO adsorption and low-temperature N adsorption to analyze pore characteristics and geochemistry.
  • Results showed high total organic carbon (TOC) content (average 2.25%), with varying quartz and clay mineral contents, revealing a complex pore system dominated by mesopores and a multimodal pore size distribution, indicating significant structural complexity.
View Article and Find Full Text PDF

As many oil and gas reservoirs approach depletion stages in the future, alongside growing energy storage demands, constructing gas storage facilities becomes critical for ensuring a stable natural gas supply. Consequently, a comprehensive geological analysis is essential to evaluate the feasibility of converting depleted gas reservoirs into gas storage facilities. The W gas reservoir in the Sichuan Basin, China, is nearing depletion and presents potential for conversion into a gas storage facility.

View Article and Find Full Text PDF

In recent years, new oil reservoirs have been discovered and exploited in the ninth member (Chang 9 Member, Ty) of the Upper Triassic Yanchang Formation (Ty) in the Longdong area, Ordos Basin. Some studies have shown that the crude oils of the Chang 9 Member may originate from the Chang 9 source rock in some areas, which may be related to the distribution of the source rock. However, the distribution of the Chang 9 source rock in the Longdong area is still unclear, which hinders further exploration and development of petroleum.

View Article and Find Full Text PDF

The rapid growth of global energy demand accelerates the development of sustainable, clean, and renewable energy sources. Biohydrogen production, driven by functional microorganisms, offers a promising solution. Multiple species of bacteria, fungi, microalgae, and archaea were able to produce hydrogen.

View Article and Find Full Text PDF

Concept and framework of digital twin human geographical environment.

J Environ Manage

January 2025

School of Geography and Environment & Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China. Electronic address:

The human geographical environment is a comprehensive setting formed by the interaction between human activities and the geographical environment, characterized by its complexity and vulnerability. Applying the digital twin method to create a new research model in a human geographical environment holds significant academic and practical value. This approach helps avoid disturbances in the real environment, deeply explores complex issues, and optimizes solutions for real-world geographical problems.

View Article and Find Full Text PDF

Understanding the dynamic characterization of the CO miscible flooding process in low permeability reservoirs and its mechanism for oil recovery enhancement is crucial for controlling CO miscible flooding sweep efficiency and further enhancing oil recovery. This study was conducted in a low permeability reservoir in Jilin, China, using both online nuclear magnetic resonance CO miscible flooding and long-core CO miscible flooding experiments. A refined dynamic characterization of the CO miscible flooding process from the macroscopic core scale to the microscopic pore scale was achieved through multiple spatial online nuclear magnetic resonance testing methods.

View Article and Find Full Text PDF

Reservoir heterogeneity significantly affects reservoir flooding efficiency and the formation and distribution of residual oil. As an effective method for enhancing recovery, polymer-surfactant (SP) flooding has a complex mechanism of action in inhomogeneous reservoirs. In this study, the effect of reservoir heterogeneity on the SP drive was investigated by designing core parallel flooding experiments combined with NMR and CT scanning techniques, taking conglomerate reservoirs in a Xinjiang oilfield as the research object.

View Article and Find Full Text PDF

The Chenghai area is a secondary structural unit within the Qikou sag of the Bohai Bay Basin, located in the southern part of the Dagang offshore area, known for its abundant oil and gas resources. Influenced by multiple episodes of tectonic activity, the Chenghai area exhibits a highly developed fault system, which significantly impacts oil and gas exploration in the region. To investigate the structural characteristics of fault zones in the Chenghai area and their petroleum geological significance, this study builds upon previous research by utilizing oilfield drilling data and relevant seismic information.

View Article and Find Full Text PDF

Visual and real-time detection of the critical micelle concentration of nonionic surfactants using a supramolecular aggregate probe responsive to stable micelles.

Talanta

December 2024

National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

The critical micelle concentration (CMC) is considered one of the important parameters for evaluating and comparing surfactants. We have developed a novel method for detecting the CMC of nonionic surfactants, based on the environmentally responsive characteristics of cyanine dyes probes. Notably, this method exhibits high sensitivity, visual real-time monitoring capabilities, and robust anti-interference properties.

View Article and Find Full Text PDF

Global chromium (Cr), tungsten (W), and vanadium (V) cycles are emerging concerns due to their toxicities to ecosystems. However, a comprehensive understanding of their geochemical reactions and controls at the sediment-water interface remains largely unknown. This knowledge gap hinders the assessment of their potential remobilization in Earth's surface environments threatened by hypoxic conditions.

View Article and Find Full Text PDF

Ensuring the sustainability of energy is pivotal for achieving a harmonious balance between environmental conservation and economic growth. The mechanical behavior of deep shale reservoir rocks is intricate, presenting challenges in ascertaining their brittleness characteristics. To address this, the study employed a suite of evaluation techniques, encompassing analyses of stress-strain curve attributes, energy dissipation patterns, and mineral composition profiles.

View Article and Find Full Text PDF

CO saline aquifer storage represents a promising strategy for mitigating the environmental impact of greenhouse gas emissions. However, the long-term effects of CO dissolved in formation water on rock minerals remain insufficiently understood. This study utilizes cast thin section analysis, scanning electron microscopy, and energy dispersive spectrometry techniques to perform a comprehensive microscopic investigation on this issue.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines shale pore structures using fractal dimension analysis of NMR data under different confining pressures, focusing on nine illite-rich shale samples.
  • The analysis reveals that increasing confining pressure leads to greater pore complexity, as indicated by rising fractal dimensions, with Model 2 being more effective in capturing this relationship in shales.
  • A strong correlation between fractal dimensions and Archie's cementation exponent m suggests a potential new method for estimating this exponent through pore distribution analysis, beneficial for petroleum exploration and understanding shale structures like those in the Goldwyer Formation.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the challenges and mechanisms of CO-enhanced shale oil recovery, emphasizing the impact of nanoscale pores and fractures on the process.
  • The researchers used a novel nanofluidic method to determine the minimum miscible pressure for CO and octane, enabling them to explore displacement behaviors in different micro-nano networks.
  • The findings reveal that miscible flooding significantly improves recovery efficiency, especially in heterogeneous conditions, and the displacement process involves distinct stages including pressure-driven flow and matrix oil production.
View Article and Find Full Text PDF
Article Synopsis
  • Quartz exists in three main forms in shales: biogenic quartz (BQ), detrital quartz (DQ), and clay-transformed quartz (CTQ), which affect the fracability of shale gas reservoirs.
  • The study analyzes shale samples from the Weiyuan gas field, focusing on the genetic origins and relative percentages of these quartz types across different graptolite zones, revealing variations in their mechanical properties and behavior.
  • Results highlight that the LM1-LM3 zones, rich in BQ, have the best conditions for hydraulic fracturing, while DQ and CTQ show different impacts on mechanical properties like Young's modulus and Poisson's ratio.
View Article and Find Full Text PDF

The connectivity is an important feature of the reservoir geological heterogeneity that effects fluid flow responses. In geostatistical modeling, random realizations are generated to describe reservoir heterogeneities. But these realizations do not necessarily honor connectivity data.

View Article and Find Full Text PDF

The supply of shale oil is of significant importance to the sustainability of energy resources. However, due to the diversity of shale lithofacies, the occurrence characteristics and enrichment patterns of free oil and adsorbed oil remain unclear. Based on this, taking the shale oil reservoir of the Fengcheng Formation in the Mahu Sag as the research object, a series of experiments were conducted, including X-ray diffraction analysis (XRD), total organic carbon (TOC) content analysis, high-pressure mercury injection (HPMI), and field emission scanning electron microscopy (FE-SEM).

View Article and Find Full Text PDF
Article Synopsis
  • * Advanced techniques like micro-X-ray fluorescence and scanning electron microscopy were used to analyze the lamina's structural characteristics and their influence on reservoir properties such as porosity, permeability, and gas content.
  • * The combination of "authigenic quartz-organic matter + carbonate + felsic-carbonate" was found to be the most beneficial for shale gas development, showing higher organic content and better reservoir characteristics.
View Article and Find Full Text PDF

Rational design of water splitting electrocatalysts through computational insights.

Chem Commun (Camb)

December 2024

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Electrocatalytic water splitting is vital for the sustainable production of green hydrogen. Electrocatalysts, including those for the hydrogen evolution reaction at the cathode and the oxygen evolution reaction at the anode, are crucial in determining the overall performance of water splitting. Traditional methods for electrocatalyst development often rely on trial-and-error, which can be time-consuming and inefficient.

View Article and Find Full Text PDF